• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2019 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_TENSOR_LAYOUT_TENSOR_INFO_H_
18 #define MINDSPORE_CCSRC_FRONTEND_PARALLEL_TENSOR_LAYOUT_TENSOR_INFO_H_
19 
20 #include <cstdint>
21 #include <string>
22 #include <utility>
23 #include <vector>
24 
25 #include "frontend/parallel/device_matrix.h"
26 #include "frontend/parallel/status.h"
27 #include "frontend/parallel/tensor_layout/tensor_layout.h"
28 
29 namespace mindspore {
30 namespace parallel {
31 using Shapes = std::vector<Shape>;
32 
33 class TensorInfo {
34  public:
TensorInfo(const TensorLayout & tensor_layout,Shape shape,Shape slice_shape)35   TensorInfo(const TensorLayout &tensor_layout, Shape shape, Shape slice_shape)
36       : tensor_layout_(tensor_layout), shape_(std::move(shape)), slice_shape_(std::move(slice_shape)) {}
TensorInfo(const TensorLayout & tensor_layout)37   explicit TensorInfo(const TensorLayout &tensor_layout) : tensor_layout_(tensor_layout) {
38     shape_ = tensor_layout.tensor_shape().array();
39     slice_shape_ = tensor_layout.slice_shape().array();
40   }
41   // trivial default constructor will not initialize c language types.
42   TensorInfo() = default;
43   ~TensorInfo() = default;
tensor_layout()44   TensorLayout tensor_layout() const { return tensor_layout_; }
slice_shape()45   Shape slice_shape() const { return slice_shape_; }
shape()46   Shape shape() const { return shape_; }
set_reduce_dim(const std::vector<int64_t> & dim)47   void set_reduce_dim(const std::vector<int64_t> &dim) { reduce_dim_ = dim; }
reduce_dim()48   std::vector<int64_t> reduce_dim() const { return reduce_dim_; }
InferStrategy()49   Dimensions InferStrategy() const {
50     Dimensions stra;
51     for (size_t i = 0; i < shape_.size(); ++i) {
52       if ((slice_shape_[i] == 0) || (shape_[i] % slice_shape_[i] != 0)) {
53         return stra;
54       }
55       int64_t dim = (int64_t)(shape_[i] / slice_shape_[i]);
56       stra.push_back(dim);
57     }
58     return stra;
59   }
60 
61  private:
62   TensorLayout tensor_layout_;
63   Shape shape_;
64   Shape slice_shape_;
65   // reduce method's reduce dim
66   std::vector<int64_t> reduce_dim_;
67 };
68 }  // namespace parallel
69 }  // namespace mindspore
70 
71 #endif  // MINDSPORE_CCSRC_FRONTEND_PARALLEL_TENSOR_LAYOUT_TENSOR_INFO_H_
72