• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // wald_example.cpp or inverse_gaussian_example.cpp
2 
3 // Copyright Paul A. Bristow 2010.
4 
5 // Use, modification and distribution are subject to the
6 // Boost Software License, Version 1.0.
7 // (See accompanying file LICENSE_1_0.txt
8 // or copy at http://www.boost.org/LICENSE_1_0.txt)
9 
10 // Example of using the Inverse Gaussian (or Inverse Normal) distribution.
11 // The Wald Distribution is
12 
13 
14 // Note that this file contains Quickbook mark-up as well as code
15 // and comments, don't change any of the special comment mark-ups!
16 
17 //[inverse_gaussian_basic1
18 /*`
19 First we need some includes to access the normal distribution
20 (and some std output of course).
21 */
22 
23 #ifdef _MSC_VER
24 # pragma warning (disable : 4224)
25 # pragma warning (disable : 4189)
26 # pragma warning (disable : 4100)
27 # pragma warning (disable : 4224)
28 # pragma warning (disable : 4512)
29 # pragma warning (disable : 4702)
30 # pragma warning (disable : 4127)
31 #endif
32 
33 //#define BOOST_MATH_INSTRUMENT
34 
35 #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
36 #define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error
37 
38 #include <boost/math/distributions/inverse_gaussian.hpp> // for inverse_gaussian_distribution
39   using boost::math::inverse_gaussian; // typedef provides default type is double.
40   using boost::math::inverse_gaussian_distribution; // for inverse gaussian distribution.
41 
42 #include <boost/math/distributions/normal.hpp> // for normal_distribution
43 using boost::math::normal; // typedef provides default type is double.
44 
45 #include <boost/array.hpp>
46 using boost::array;
47 
48 #include <iostream>
49   using std::cout; using std::endl; using std::left; using std::showpoint; using std::noshowpoint;
50 #include <iomanip>
51   using std::setw; using std::setprecision;
52 #include <limits>
53   using std::numeric_limits;
54 #include <sstream>
55   using std::string;
56 #include <string>
57   using std::stringstream;
58 
59 // const double tol = 3 * numeric_limits<double>::epsilon();
60 
main()61 int main()
62 {
63   cout << "Example: Inverse Gaussian Distribution."<< endl;
64 
65  try
66   {
67 
68       double tolfeweps = numeric_limits<double>::epsilon();
69       //cout << "Tolerance = " << tol << endl;
70 
71       int precision = 17; // traditional tables are only computed to much lower precision.
72       cout.precision(17); // std::numeric_limits<double>::max_digits10; for 64-bit doubles.
73 
74      // Traditional tables and values.
75      double step = 0.2; // in z
76       double range = 4; // min and max z = -range to +range.
77       // Construct a (standard) inverse gaussian distribution s
78       inverse_gaussian w11(1, 1);
79       // (default mean = units, and standard deviation = unity)
80       cout << "(Standard) Inverse Gaussian distribution, mean = "<< w11.mean()
81           << ", scale = " << w11.scale() << endl;
82 
83 /*` First the probability distribution function (pdf).
84  */
85       cout << "Probability distribution function (pdf) values" << endl;
86       cout << "  z " "      pdf " << endl;
87       cout.precision(5);
88       for (double z = (numeric_limits<double>::min)(); z < range + step; z += step)
89       {
90         cout << left << setprecision(3) << setw(6) << z << " "
91           << setprecision(precision) << setw(12) << pdf(w11, z) << endl;
92       }
93       cout.precision(6); // default
94  /*`And the area under the normal curve from -[infin] up to z,
95       the cumulative distribution function (cdf).
96 */
97 
98       // For a (default) inverse gaussian distribution.
99       cout << "Integral (area under the curve) from 0 up to z (cdf) " << endl;
100       cout << "  z " "      cdf " << endl;
101       for (double z = (numeric_limits<double>::min)(); z < range + step; z += step)
102       {
103         cout << left << setprecision(3) << setw(6) << z << " "
104           << setprecision(precision) << setw(12) << cdf(w11, z) << endl;
105       }
106       /*`giving the following table:
107 [pre
108     z       pdf
109   2.23e-308 -1.#IND
110   0.2    0.90052111680384117
111   0.4    1.0055127039453111
112   0.6    0.75123750098955733
113   0.8    0.54377310461643302
114   1      0.3989422804014327
115   1.2    0.29846949816803292
116   1.4    0.2274579835638664
117   1.6    0.17614566625628389
118   1.8    0.13829083543591469
119   2      0.10984782236693062
120   2.2    0.088133964251182237
121   2.4    0.071327382959107177
122   2.6    0.058162562161661699
123   2.8    0.047742223328567722
124   3      0.039418357969819712
125   3.2    0.032715223861241892
126   3.4    0.027278388940958308
127   3.6    0.022840312999395804
128   3.8    0.019196657941016954
129   4      0.016189699458236451
130   Integral (area under the curve) from 0 up to z (cdf)
131     z       cdf
132   2.23e-308 0
133   0.2    0.063753567519976254
134   0.4    0.2706136704424541
135   0.6    0.44638391340412931
136   0.8    0.57472390962590925
137   1      0.66810200122317065
138   1.2    0.73724578422952536
139   1.4    0.78944214237790356
140   1.6    0.82953458108474554
141   1.8    0.86079282968276671
142   2      0.88547542598600626
143   2.2    0.90517870624273966
144   2.4    0.92105495653509362
145   2.6    0.93395164268166786
146   2.8    0.94450240360053817
147   3      0.95318792074278835
148   3.2    0.96037753019309191
149   3.4    0.96635823989417369
150   3.6    0.97135533107998406
151   3.8    0.97554722413538364
152   4      0.97907636417888622
153 ]
154 
155 /*`We can get the inverse, the quantile, percentile, percentage point, or critical value
156 for a probability for a few probability from the above table, for z = 0.4, 1.0, 2.0:
157 */
158       cout << quantile(w11, 0.27061367044245421 ) << endl; // 0.4
159       cout << quantile(w11, 0.66810200122317065) << endl; // 1.0
160       cout << quantile(w11, 0.88547542598600615) << endl; // 2.0
161 /*`turning the expect values apart from some 'computational noise' in the least significant bit or two.
162 
163 [pre
164   0.40000000000000008
165   0.99999999999999967
166   1.9999999999999973
167 ]
168 
169 */
170 
171     //  cout << "pnorm01(-0.406053) " << pnorm01(-0.406053) << ", cdfn01(-0.406053) = " << cdf(n01, -0.406053) << endl;
172    //cout << "pnorm01(0.5) = " << pnorm01(0.5) << endl; // R pnorm(0.5,0,1) = 0.6914625  == 0.69146246127401312
173     // R qnorm(0.6914625,0,1) = 0.5
174 
175     // formatC(SuppDists::qinvGauss(0.3649755481729598, 1, 1), digits=17)  [1] "0.50000000969034875"
176 
177 
178 
179   // formatC(SuppDists::dinvGauss(0.01, 1, 1), digits=17) [1] "2.0811768202028392e-19"
180   // formatC(SuppDists::pinvGauss(0.01, 1, 1), digits=17) [1] "4.122313403318778e-23"
181 
182 
183 
184   //cout << " qinvgauss(0.3649755481729598, 1, 1) = " << qinvgauss(0.3649755481729598, 1, 1) << endl;  // 0.5
185  // cout << quantile(s, 0.66810200122317065) << endl; // expect 1, get 0.50517388467190727
186   //cout << " qinvgauss(0.62502320258649202, 1, 1) = " << qinvgauss(0.62502320258649202, 1, 1) << endl; // 0.9
187   //cout << " qinvgauss(0.063753567519976254, 1, 1) = " << qinvgauss(0.063753567519976254, 1, 1) << endl; // 0.2
188   //cout << " qinvgauss(0.0040761113207110162, 1, 1) = " << qinvgauss(0.0040761113207110162, 1, 1) << endl; // 0.1
189 
190   //double x = 1.; // SuppDists::pinvGauss(0.4, 1,1) [1] 0.2706137
191   //double c = pinvgauss(x, 1, 1); // 0.3649755481729598 ==   cdf(x, 1,1) 0.36497554817295974
192   //cout << "  pinvgauss(x, 1, 1) = " << c << endl; //  pinvgauss(x, 1, 1) = 0.27061367044245421
193   //double p = pdf(w11, x);
194   //double c = cdf(w11, x); // cdf(1, 1, 1) = 0.66810200122317065
195   //cout << "cdf(" << x << ", " << w11.mean() << ", "<< w11.scale() << ") = " << c << endl; // cdf(x, 1, 1) 0.27061367044245421
196   //cout << "pdf(" << x << ", " << w11.mean() << ", "<< w11.scale() << ") = " << p << endl;
197   //double q = quantile(w11, c);
198   //cout << "quantile(w11, " << c <<  ") = " << q << endl;
199 
200   //cout  << "quantile(w11, 4.122313403318778e-23) = "<< quantile(w11, 4.122313403318778e-23) << endl; // quantile
201   //cout << "quantile(w11, 4.8791443010851493e-219) = " << quantile(w11, 4.8791443010851493e-219) << endl; // quantile
202 
203   //double c1 = 1 - cdf(w11, x); //  1 - cdf(1, 1, 1) = 0.33189799877682935
204   //cout << "1 - cdf(" << x << ", " << w11.mean() << ", " << w11.scale() << ") = " << c1 << endl; // cdf(x, 1, 1) 0.27061367044245421
205   //double cc = cdf(complement(w11, x));
206   //cout << "cdf(complement(" << x << ", " << w11.mean() << ", "<< w11.scale() << ")) = " << cc << endl; // cdf(x, 1, 1) 0.27061367044245421
207   //// 1 - cdf(1000, 1, 1) = 0
208   //// cdf(complement(1000, 1, 1)) = 4.8694344366900402e-222
209 
210   //cout << "quantile(w11, " << c << ") = "<< quantile(w11, c) << endl; // quantile = 0.99999999999999978 == x = 1
211   //cout << "quantile(w11, " << c << ") = "<< quantile(w11, 1 - c) << endl; // quantile complement. quantile(w11, 0.66810200122317065) = 0.46336593652340152
212 //  cout << "quantile(complement(w11, " << c << ")) = " << quantile(complement(w11, c)) << endl; // quantile complement                = 0.46336593652340163
213 
214   // cdf(1, 1, 1) = 0.66810200122317065
215   // 1 - cdf(1, 1, 1) = 0.33189799877682935
216   // cdf(complement(1, 1, 1)) = 0.33189799877682929
217 
218   // quantile(w11, 0.66810200122317065) = 0.99999999999999978
219   // 1 - quantile(w11, 0.66810200122317065) = 2.2204460492503131e-016
220   // quantile(complement(w11, 0.33189799877682929)) = 0.99999999999999989
221 
222 
223   // qinvgauss(c, 1, 1) = 0.3999999999999998
224   // SuppDists::qinvGauss(0.270613670442454, 1, 1) [1] 0.4
225 
226 
227   /*
228   double qs = pinvgaussU(c, 1, 1); //
229     cout << "qinvgaussU(c, 1, 1) = " << qs << endl; // qinvgaussU(c, 1, 1) = 0.86567442459240929
230     // > z=q - exp(c) * p [1] 0.8656744 qs 0.86567442459240929 double
231     // Is this the complement?
232     cout << "qgamma(0.2, 0.5, 1) expect 0.0320923 = " << qgamma(0.2, 0.5, 1) << endl;
233     // qgamma(0.2, 0.5, 1) expect 0.0320923 = 0.032092377333650807
234 
235 
236   cout << "qinvgauss(pinvgauss(x, 1, 1) = " << q
237   << ", diff = " << x - q << ", fraction = " << (x - q) /x << endl; // 0.5
238 
239  */   // > SuppDists::pinvGauss(0.02, 1,1)  [1] 4.139176e-12
240   // > SuppDists::qinvGauss(4.139176e-12, 1,1) [1] 0.02000000
241 
242 
243     // pinvGauss(1,1,1) = 0.668102  C++  == 0.66810200122317065
244   // qinvGauss(0.668102,1,1) = 1
245 
246    //  SuppDists::pinvGauss(0.3,1,1) = 0.1657266
247   // cout << "qinvGauss(0.0040761113207110162, 1, 1) = " << qinvgauss(0.0040761113207110162, 1, 1) << endl;
248   //cout << "quantile(s, 0.1657266) = " << quantile(s, 0.1657266) << endl; // expect 1.
249 
250   //wald s12(2, 1);
251   //cout << "qinvGauss(0.3, 2, 1) = " << qinvgauss(0.3, 2, 1) << endl; // SuppDists::qinvGauss(0.3,2,1) == 0.58288065635052944
252   //// but actually get qinvGauss(0.3, 2, 1) = 0.58288064777632187
253   //cout  << "cdf(s12, 0.3) = " << cdf(s12, 0.3) << endl; //  cdf(s12, 0.3) = 0.10895339868447573
254 
255  // using boost::math::wald;
256   //cout.precision(6);
257 
258  /*
259  double m = 1;
260   double l = 1;
261   double x = 0.1;
262   //c = cdf(w, x);
263   double p = pinvgauss(x, m, l);
264   cout << "x = " << x << ",  pinvgauss(x, m, l) = " << p << endl; // R 0.4 0.2706137
265   double qg = qgamma(1.- p, 0.5, 1.0, true, false);
266   cout << " qgamma(1.- p, 0.5, 1.0, true, false) = " << qg << endl; // 0.606817
267   double g = guess_whitmore(p, m, l);
268   cout << "m = " << m << ", l = " << l << ",   x = " << x << ", guess = " << g
269     << ", diff = " << (x - g) << endl;
270 
271   g = guess_wheeler(p, m, l);
272    cout << "m = " << m << ", l = " << l << ",   x = " << x << ", guess = " << g
273     << ", diff = " << (x - g) << endl;
274 
275    g = guess_bagshaw(p, m, l);
276    cout << "m = " << m << ", l = " << l << ",   x = " << x << ", guess = " << g
277     << ", diff = " << (x - g) << endl;
278 
279    // m = 1, l = 10,   x = 0.9, guess = 0.89792, diff = 0.00231075 so a better fit.
280   // x = 0.9, guess = 0.887907
281   // x = 0.5, guess = 0.474977
282   // x = 0.4, guess = 0.369597
283   // x = 0.2, guess = 0.155196
284 
285   // m = 1, l = 2,   x = 0.9, guess = 1.0312, diff = -0.145778
286   // m = 1, l = 2,   x = 0.1, guess = 0.122201, diff = -0.222013
287   //  m = 1, l = 2,   x = 0.2, guess = 0.299326, diff = -0.49663
288   //   m = 1, l = 2,   x = 0.5, guess = 1.00437, diff = -1.00875
289   // m = 1, l = 2,   x = 0.7, guess = 1.01517, diff = -0.450247
290 
291   double ls[7] = {0.1, 0.2, 0.5, 1., 2., 10, 100}; // scale values.
292   double ms[10] = {0.001, 0.02, 0.1, 0.2, 0.5, 0.9, 1., 2., 10, 100};  // mean values.
293    */
294 
295     cout.precision(6); // Restore to default.
296   } // try
297   catch(const std::exception& e)
298   { // Always useful to include try & catch blocks because default policies
299     // are to throw exceptions on arguments that cause errors like underflow, overflow.
300     // Lacking try & catch blocks, the program will abort without a message below,
301     // which may give some helpful clues as to the cause of the exception.
302     std::cout <<
303       "\n""Message from thrown exception was:\n   " << e.what() << std::endl;
304   }
305   return 0;
306 }  // int main()
307 
308 
309 /*
310 
311 Output is:
312 
313 inverse_gaussian_example.cpp
314   inverse_gaussian_example.vcxproj -> J:\Cpp\MathToolkit\test\Math_test\Debug\inverse_gaussian_example.exe
315   Example: Inverse Gaussian Distribution.
316   (Standard) Inverse Gaussian distribution, mean = 1, scale = 1
317   Probability distribution function (pdf) values
318     z       pdf
319   2.23e-308 -1.#IND
320   0.2    0.90052111680384117
321   0.4    1.0055127039453111
322   0.6    0.75123750098955733
323   0.8    0.54377310461643302
324   1      0.3989422804014327
325   1.2    0.29846949816803292
326   1.4    0.2274579835638664
327   1.6    0.17614566625628389
328   1.8    0.13829083543591469
329   2      0.10984782236693062
330   2.2    0.088133964251182237
331   2.4    0.071327382959107177
332   2.6    0.058162562161661699
333   2.8    0.047742223328567722
334   3      0.039418357969819712
335   3.2    0.032715223861241892
336   3.4    0.027278388940958308
337   3.6    0.022840312999395804
338   3.8    0.019196657941016954
339   4      0.016189699458236451
340   Integral (area under the curve) from 0 up to z (cdf)
341     z       cdf
342   2.23e-308 0
343   0.2    0.063753567519976254
344   0.4    0.2706136704424541
345   0.6    0.44638391340412931
346   0.8    0.57472390962590925
347   1      0.66810200122317065
348   1.2    0.73724578422952536
349   1.4    0.78944214237790356
350   1.6    0.82953458108474554
351   1.8    0.86079282968276671
352   2      0.88547542598600626
353   2.2    0.90517870624273966
354   2.4    0.92105495653509362
355   2.6    0.93395164268166786
356   2.8    0.94450240360053817
357   3      0.95318792074278835
358   3.2    0.96037753019309191
359   3.4    0.96635823989417369
360   3.6    0.97135533107998406
361   3.8    0.97554722413538364
362   4      0.97907636417888622
363   0.40000000000000008
364   0.99999999999999967
365   1.9999999999999973
366 
367 
368 
369 > SuppDists::dinvGauss(2, 1, 1) [1] 0.1098478
370 > SuppDists::dinvGauss(0.4, 1, 1) [1] 1.005513
371 > SuppDists::dinvGauss(0.5, 1, 1) [1] 0.8787826
372 > SuppDists::dinvGauss(0.39, 1, 1) [1] 1.016559
373 > SuppDists::dinvGauss(0.38, 1, 1) [1] 1.027006
374 > SuppDists::dinvGauss(0.37, 1, 1) [1] 1.036748
375 > SuppDists::dinvGauss(0.36, 1, 1) [1] 1.045661
376 > SuppDists::dinvGauss(0.35, 1, 1) [1] 1.053611
377 > SuppDists::dinvGauss(0.3, 1, 1) [1] 1.072888
378 > SuppDists::dinvGauss(0.1, 1, 1) [1] 0.2197948
379 > SuppDists::dinvGauss(0.2, 1, 1) [1] 0.9005211
380 >
381 x = 0.3 [1, 1] 1.0728879234594337  // R SuppDists::dinvGauss(0.3, 1, 1) [1] 1.072888
382 
383 x = 1   [1, 1] 0.3989422804014327
384 
385 
386  0 "                NA"
387  1 "0.3989422804014327"
388  2 "0.10984782236693059"
389  3 "0.039418357969819733"
390  4 "0.016189699458236468"
391  5 "0.007204168934430732"
392  6 "0.003379893528659049"
393  7 "0.0016462878258114036"
394  8 "0.00082460931140859956"
395  9 "0.00042207355643694234"
396 10 "0.00021979480031862676"
397 
398 
399 [1] "                NA"     " 0.690988298942671"     "0.11539974210409144"
400  [4] "0.01799698883772935"    "0.0029555399206496469"  "0.00050863023587406587"
401  [7] "9.0761842931362914e-05" "1.6655279133132795e-05" "3.1243174913715429e-06"
402 [10] "5.96530227727434e-07"   "1.1555606328299836e-07"
403 
404 
405 matC(dinvGauss(0:10, 1, 3), digits=17)  df = 3
406 [1] "                NA"     " 0.690988298942671"     "0.11539974210409144"
407  [4] "0.01799698883772935"    "0.0029555399206496469"  "0.00050863023587406587"
408  [7] "9.0761842931362914e-05" "1.6655279133132795e-05" "3.1243174913715429e-06"
409 [10] "5.96530227727434e-07"   "1.1555606328299836e-07"
410 $title
411 [1] "Inverse Gaussian"
412 
413 $nu
414 [1] 1
415 
416 $lambda
417 [1] 3
418 
419 $Mean
420 [1] 1
421 
422 $Median
423 [1] 0.8596309
424 
425 $Mode
426 [1] 0.618034
427 
428 $Variance
429 [1] 0.3333333
430 
431 $SD
432 [1] 0.5773503
433 
434 $ThirdCentralMoment
435 [1] 0.3333333
436 
437 $FourthCentralMoment
438 [1] 0.8888889
439 
440 $PearsonsSkewness...mean.minus.mode.div.SD
441 [1] 0.6615845
442 
443 $Skewness...sqrtB1
444 [1] 1.732051
445 
446 $Kurtosis...B2.minus.3
447 [1] 5
448 
449   Example: Wald distribution.
450   (Standard) Wald distribution, mean = 1, scale = 1
451   1 dx =      0.24890250442652451, x =      0.70924622051646713
452   2 dx =    -0.038547954953794553, x =      0.46034371608994262
453   3 dx =   -0.0011074090830291131, x =      0.49889167104373716
454   4 dx = -9.1987259926368029e-007, x =      0.49999908012676625
455   5 dx =  -6.346513344581067e-013, x =      0.49999999999936551
456   dx = 6.3168242705156857e-017 at i = 6
457    qinvgauss(0.3649755481729598, 1, 1) = 0.50000000000000011
458   1 dx =       0.6719944578376621, x =       1.3735318786222666
459   2 dx =     -0.16997432635769361, x =      0.70153742078460446
460   3 dx =    -0.027865119206495724, x =      0.87151174714229807
461   4 dx =  -0.00062283290009492603, x =      0.89937686634879377
462   5 dx = -3.0075104108208687e-007, x =      0.89999969924888867
463   6 dx = -7.0485322513588089e-014, x =      0.89999999999992975
464   7 dx =   9.557331866250277e-016, x =      0.90000000000000024
465   dx = 0 at i = 8
466    qinvgauss(0.62502320258649202, 1, 1) = 0.89999999999999925
467   1 dx =   -0.0052296256747447678, x =      0.19483508278446249
468   2 dx =  6.4699046853900505e-005, x =      0.20006470845920726
469   3 dx =  9.4123530465288137e-009, x =      0.20000000941235335
470   4 dx =  2.7739513919147025e-016, x =      0.20000000000000032
471   dx = 1.5410841066192808e-016 at i = 5
472    qinvgauss(0.063753567519976254, 1, 1) = 0.20000000000000004
473   1 dx =                       -1, x =     -0.46073286697416105
474   2 dx =      0.47665501251497061, x =      0.53926713302583895
475   3 dx =       -0.171105768635964, x =     0.062612120510868341
476   4 dx =     0.091490360797512563, x =      0.23371788914683234
477   5 dx =     0.029410311722649803, x =      0.14222752834931979
478   6 dx =     0.010761845493592421, x =      0.11281721662666999
479   7 dx =    0.0019864890597643035, x =      0.10205537113307757
480   8 dx =  6.8800383732599561e-005, x =      0.10006888207331327
481   9 dx =  8.1689466405590418e-008, x =      0.10000008168958067
482   10 dx =   1.133634672475146e-013, x =      0.10000000000011428
483   11 dx =  5.9588135045224526e-016, x =      0.10000000000000091
484   12 dx =   3.433223674791152e-016, x =      0.10000000000000031
485   dx = 9.0763384505974048e-017 at i = 13
486    qinvgauss(0.0040761113207110162, 1, 1) = 0.099999999999999964
487 
488 
489      wald_example.vcxproj -> J:\Cpp\MathToolkit\test\Math_test\Debug\wald_example.exe
490   Example: Wald distribution.
491   Tolerance = 6.66134e-016
492   (Standard) Wald distribution, mean = 1, scale = 1
493   cdf(x, 1,1) 4.1390252102096375e-012
494   qinvgauss(pinvgauss(x, 1, 1) = 0.020116801973767886, diff = -0.00011680197376788548, fraction = -0.005840098688394274
495   ____________________________________________________________
496   wald 1, 1
497   x =                     0.02, diff x - qinvgauss(cdf) = -0.00011680197376788548
498   x =      0.10000000000000001, diff x - qinvgauss(cdf) = 8.7430063189231078e-016
499   x =      0.20000000000000001, diff x - qinvgauss(cdf) = -1.1102230246251565e-016
500   x =      0.29999999999999999, diff x - qinvgauss(cdf) = 0
501   x =      0.40000000000000002, diff x - qinvgauss(cdf) = 2.2204460492503131e-016
502   x =                      0.5, diff x - qinvgauss(cdf) = -1.1102230246251565e-016
503   x =      0.59999999999999998, diff x - qinvgauss(cdf) = 1.1102230246251565e-016
504   x =      0.80000000000000004, diff x - qinvgauss(cdf) = 1.1102230246251565e-016
505   x =      0.90000000000000002, diff x - qinvgauss(cdf) = 0
506   x =      0.98999999999999999, diff x - qinvgauss(cdf) = -1.1102230246251565e-016
507   x =                    0.999, diff x - qinvgauss(cdf) = -1.1102230246251565e-016
508 
509 
510 */
511 
512 
513 
514