• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2021 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <memory>
18 #include <string>
19 #include "common/common.h"
20 #include "minddata/dataset/engine/execution_tree.h"
21 #include "minddata/dataset/engine/ir/datasetops/dataset_node.h"
22 #include "minddata/dataset/engine/tree_adapter.h"
23 #include "minddata/dataset/include/dataset/datasets.h"
24 #include "minddata/dataset/include/dataset/transforms.h"
25 #include "minddata/dataset/include/dataset/vision.h"
26 #include "minddata/dataset/kernels/tensor_op.h"
27 
28 using namespace mindspore::dataset;
29 
30 class MindDataTestTensorOpFusionPass : public UT::DatasetOpTesting {
31  public:
32   MindDataTestTensorOpFusionPass() = default;
33 };
34 
TEST_F(MindDataTestTensorOpFusionPass,RandomCropDecodeResizeDisabled)35 TEST_F(MindDataTestTensorOpFusionPass, RandomCropDecodeResizeDisabled) {
36   MS_LOG(INFO) << "Doing MindDataTestTensorOpFusionPass-RandomCropDecodeResizeDisabled";
37 
38   std::string folder_path = datasets_root_path_ + "/testPK/data/";
39   std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, std::make_shared<SequentialSampler>(0, 11));
40 
41   // Create objects for the tensor ops
42   std::shared_ptr<TensorTransform> decode(new vision::Decode());
43   std::shared_ptr<TensorTransform> random_resized_crop(new vision::RandomResizedCrop({5}));
44   ds = ds->Map({decode, random_resized_crop}, {"image"});
45 
46   std::shared_ptr<DatasetNode> node = ds->IRNode();
47   auto ir_tree = std::make_shared<TreeAdapter>();
48   // Disable IR optimization pass
49   ir_tree->SetOptimize(false);
50   Status rc;
51   rc = ir_tree->Compile(node);
52   EXPECT_TRUE(rc);
53   auto root_op = ir_tree->GetRoot();
54 
55   auto tree = std::make_shared<ExecutionTree>();
56   auto it = tree->begin(static_cast<std::shared_ptr<DatasetOp>>(root_op));
57   ++it;
58   auto *map_op = &(*it);
59   auto tfuncs = static_cast<MapOp *>(map_op)->TFuncs();
60   auto func_it = tfuncs.begin();
61   EXPECT_EQ((*func_it)->Name(), kDecodeOp);
62   ++func_it;
63   EXPECT_EQ((*func_it)->Name(), kRandomCropAndResizeOp);
64 }
65 
TEST_F(MindDataTestTensorOpFusionPass,RandomCropDecodeResizeEnabled)66 TEST_F(MindDataTestTensorOpFusionPass, RandomCropDecodeResizeEnabled) {
67   MS_LOG(INFO) << "Doing MindDataTestTensorOpFusionPass-RandomCropDecodeResizeEnabled";
68 
69   std::string folder_path = datasets_root_path_ + "/testPK/data/";
70   std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, std::make_shared<SequentialSampler>(0, 11));
71 
72   // Create objects for the tensor ops
73   std::shared_ptr<TensorTransform> decode(new vision::Decode());
74   std::shared_ptr<TensorTransform> random_resized_crop(new vision::RandomResizedCrop({5}));
75   ds = ds->Map({decode, random_resized_crop}, {"image"});
76 
77   std::shared_ptr<DatasetNode> node = ds->IRNode();
78   auto ir_tree = std::make_shared<TreeAdapter>();
79   // Enable IR optimization pass
80   ir_tree->SetOptimize(true);
81   Status rc;
82   rc = ir_tree->Compile(node);
83   EXPECT_TRUE(rc);
84   auto root_op = ir_tree->GetRoot();
85 
86   auto tree = std::make_shared<ExecutionTree>();
87   auto it = tree->begin(static_cast<std::shared_ptr<DatasetOp>>(root_op));
88   ++it;
89   auto *map_op = &(*it);
90   auto tfuncs = static_cast<MapOp *>(map_op)->TFuncs();
91   auto func_it = tfuncs.begin();
92   // FIXME: Currently the following 2 commented out verifications for this test will fail because this
93   //        optimization is still in ExecutionTree code, and not yet in IR optimization pass
94   //        However, use a bogus check for func_it, to avoid compile error for unused variable.
95   EXPECT_EQ(func_it, func_it);
96   // EXPECT_EQ((*func_it)->Name(), kRandomCropDecodeResizeOp);
97   // EXPECT_EQ(++func_it, tfuncs.end());
98 }
99 
100