• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Numerical Differentiation</title>
5<link rel="stylesheet" href="../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../quadrature.html" title="Chapter 13. Quadrature and Differentiation">
9<link rel="prev" href="wavelet_transforms.html" title="Wavelet Transforms">
10<link rel="next" href="autodiff.html" title="Automatic Differentiation">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="wavelet_transforms.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="autodiff.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h2 class="title" style="clear: both">
27<a name="math_toolkit.diff"></a><a class="link" href="diff.html" title="Numerical Differentiation">Numerical Differentiation</a>
28</h2></div></div></div>
29<h4>
30<a name="math_toolkit.diff.h0"></a>
31      <span class="phrase"><a name="math_toolkit.diff.synopsis"></a></span><a class="link" href="diff.html#math_toolkit.diff.synopsis">Synopsis</a>
32    </h4>
33<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">differentiation</span><span class="special">/</span><span class="identifier">finite_difference</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
34
35
36<span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">differentiation</span> <span class="special">{</span>
37
38    <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Real</span><span class="special">&gt;</span>
39    <span class="identifier">Real</span> <span class="identifier">complex_step_derivative</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">x</span><span class="special">);</span>
40
41    <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Real</span><span class="special">,</span> <span class="identifier">size_t</span> <span class="identifier">order</span> <span class="special">=</span> <span class="number">6</span><span class="special">&gt;</span>
42    <span class="identifier">Real</span> <span class="identifier">finite_difference_derivative</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">*</span> <span class="identifier">error</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">);</span>
43
44<span class="special">}}}</span> <span class="comment">// namespaces</span>
45</pre>
46<h4>
47<a name="math_toolkit.diff.h1"></a>
48      <span class="phrase"><a name="math_toolkit.diff.description"></a></span><a class="link" href="diff.html#math_toolkit.diff.description">Description</a>
49    </h4>
50<p>
51      The function <code class="computeroutput"><span class="identifier">finite_difference_derivative</span></code>
52      calculates a finite-difference approximation to the derivative of a function
53      <span class="emphasis"><em>f</em></span> at point <span class="emphasis"><em>x</em></span>. A basic usage is
54    </p>
55<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">exp</span><span class="special">(</span><span class="identifier">x</span><span class="special">);</span> <span class="special">};</span>
56<span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">1.7</span><span class="special">;</span>
57<span class="keyword">double</span> <span class="identifier">dfdx</span> <span class="special">=</span> <span class="identifier">finite_difference_derivative</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">x</span><span class="special">);</span>
58</pre>
59<p>
60      Finite differencing is complicated, as differentiation is <span class="emphasis"><em>infinitely</em></span>
61      ill-conditioned. In addition, for any function implemented in finite-precision
62      arithmetic, the "true" derivative is <span class="emphasis"><em>zero</em></span> almost
63      everywhere, and undefined at representables. However, some tricks allow for
64      reasonable results to be obtained in many cases.
65    </p>
66<p>
67      There are two sources of error from finite differences: One, the truncation
68      error arising from using a finite number of samples to cancel out higher order
69      terms in the Taylor series. The second is the roundoff error involved in evaluating
70      the function. The truncation error goes to zero as <span class="emphasis"><em>h</em></span> →
71      0, but the roundoff error becomes unbounded. By balancing these two sources
72      of error, we can choose a value of <span class="emphasis"><em>h</em></span> that minimizes the
73      maximum total error. For this reason boost's <code class="computeroutput"><span class="identifier">finite_difference_derivative</span></code>
74      does not require the user to input a stepsize. For more details about the theoretical
75      error analysis involved in finite-difference approximations to the derivative,
76      see <a href="http://web.archive.org/web/20150420195907/http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf" target="_top">here</a>.
77    </p>
78<p>
79      Despite the effort that has went into choosing a reasonable value of <span class="emphasis"><em>h</em></span>,
80      the problem is still fundamentally ill-conditioned, and hence an error estimate
81      is essential. It can be queried as follows
82    </p>
83<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">error_estimate</span><span class="special">;</span>
84<span class="keyword">double</span> <span class="identifier">d</span> <span class="special">=</span> <span class="identifier">finite_difference_derivative</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">x</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">error_estimate</span><span class="special">);</span>
85</pre>
86<p>
87      N.B.: Producing an error estimate requires additional function evaluations
88      and as such is slower than simple evaluation of the derivative. It also expands
89      the domain over which the function must be differentiable and requires the
90      function to have two more continuous derivatives. The error estimate is computed
91      under the assumption that <span class="emphasis"><em>f</em></span> is evaluated to 1ULP. This
92      might seem an extreme assumption, but it is the only sensible one, as the routine
93      cannot know the functions rounding error. If the function cannot be evaluated
94      with very great accuracy, Lanczos's smoothing differentiation is recommended
95      as an alternative.
96    </p>
97<p>
98      The default order of accuracy is 6, which reflects that fact that people tend
99      to be interested in functions with many continuous derivatives. If your function
100      does not have 7 continuous derivatives, is may be of interest to use a lower
101      order method, which can be achieved via (say)
102    </p>
103<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">d</span> <span class="special">=</span> <span class="identifier">finite_difference_derivative</span><span class="special">&lt;</span><span class="keyword">decltype</span><span class="special">(</span><span class="identifier">f</span><span class="special">),</span> <span class="identifier">Real</span><span class="special">,</span> <span class="number">2</span><span class="special">&gt;(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">x</span><span class="special">);</span>
104</pre>
105<p>
106      This requests a second-order accurate derivative be computed.
107    </p>
108<p>
109      It is emphatically <span class="emphasis"><em>not</em></span> the case that higher order methods
110      always give higher accuracy for smooth functions. Higher order methods require
111      more addition of positive and negative terms, which can lead to catastrophic
112      cancellation. A function which is very good at making a mockery of finite-difference
113      differentiation is exp(x)/(cos(x)<sup>3</sup> + sin(x)<sup>3</sup>). Differentiating this function
114      by <code class="computeroutput"><span class="identifier">finite_difference_derivative</span></code>
115      in double precision at <span class="emphasis"><em>x=5.5</em></span> gives zero correct digits
116      at order 4, 6, and 8, but recovers 5 correct digits at order 2. These are dangerous
117      waters; use the error estimates to tread carefully.
118    </p>
119<p>
120      For a finite-difference method of order <span class="emphasis"><em>k</em></span>, the error is
121      <span class="emphasis"><em>C</em></span> ε<sup>k/k+1</sup>. In the limit <span class="emphasis"><em>k</em></span> →
122      ∞, we see that the error tends to ε, recovering the full precision
123      for the type. However, this ignores the fact that higher-order methods require
124      subtracting more nearly-equal (perhaps noisy) terms, so the constant <span class="emphasis"><em>C</em></span>
125      grows with <span class="emphasis"><em>k</em></span>. Since <span class="emphasis"><em>C</em></span> grows quickly
126      and ε<sup>k/k+1</sup> approaches ε slowly, we can see there is a compromise
127      between high-order accuracy and conditioning of the difference quotient. In
128      practice we have found that <span class="emphasis"><em>k=6</em></span> seems to be a good compromise
129      between the two (and have made this the default), but users are encouraged
130      to examine the error estimates to choose an optimal order of accuracy for the
131      given problem.
132    </p>
133<div class="table">
134<a name="math_toolkit.diff.id"></a><p class="title"><b>Table 13.1. Cost of Finite-Difference Numerical Differentiation</b></p>
135<div class="table-contents"><table class="table" summary="Cost of Finite-Difference Numerical Differentiation">
136<colgroup>
137<col>
138<col>
139<col>
140<col>
141<col>
142</colgroup>
143<thead><tr>
144<th>
145              <p>
146                Order of Accuracy
147              </p>
148            </th>
149<th>
150              <p>
151                Function Evaluations
152              </p>
153            </th>
154<th>
155              <p>
156                Error
157              </p>
158            </th>
159<th>
160              <p>
161                Continuous Derivatives Required for Error Estimate to Hold
162              </p>
163            </th>
164<th>
165              <p>
166                Additional Function Evaluations to Produce Error Estimates
167              </p>
168            </th>
169</tr></thead>
170<tbody>
171<tr>
172<td>
173              <p>
174                1
175              </p>
176            </td>
177<td>
178              <p>
179                2
180              </p>
181            </td>
182<td>
183              <p>
184                ε<sup>1/2</sup>
185              </p>
186            </td>
187<td>
188              <p>
189                2
190              </p>
191            </td>
192<td>
193              <p>
194                1
195              </p>
196            </td>
197</tr>
198<tr>
199<td>
200              <p>
201                2
202              </p>
203            </td>
204<td>
205              <p>
206                2
207              </p>
208            </td>
209<td>
210              <p>
211                ε<sup>2/3</sup>
212              </p>
213            </td>
214<td>
215              <p>
216                3
217              </p>
218            </td>
219<td>
220              <p>
221                2
222              </p>
223            </td>
224</tr>
225<tr>
226<td>
227              <p>
228                4
229              </p>
230            </td>
231<td>
232              <p>
233                4
234              </p>
235            </td>
236<td>
237              <p>
238                ε<sup>4/5</sup>
239              </p>
240            </td>
241<td>
242              <p>
243                5
244              </p>
245            </td>
246<td>
247              <p>
248                2
249              </p>
250            </td>
251</tr>
252<tr>
253<td>
254              <p>
255                6
256              </p>
257            </td>
258<td>
259              <p>
260                6
261              </p>
262            </td>
263<td>
264              <p>
265                ε<sup>6/7</sup>
266              </p>
267            </td>
268<td>
269              <p>
270                7
271              </p>
272            </td>
273<td>
274              <p>
275                2
276              </p>
277            </td>
278</tr>
279<tr>
280<td>
281              <p>
282                8
283              </p>
284            </td>
285<td>
286              <p>
287                8
288              </p>
289            </td>
290<td>
291              <p>
292                ε<sup>8/9</sup>
293              </p>
294            </td>
295<td>
296              <p>
297                9
298              </p>
299            </td>
300<td>
301              <p>
302                2
303              </p>
304            </td>
305</tr>
306</tbody>
307</table></div>
308</div>
309<br class="table-break"><p>
310      Given all the caveats which must be kept in mind for successful use of finite-difference
311      differentiation, it is reasonable to try to avoid it if possible. Boost provides
312      two possibilities: The Chebyshev transform (see <a class="link" href="sf_poly/chebyshev.html" title="Chebyshev Polynomials">here</a>)
313      and the complex step derivative. If your function is the restriction to the
314      real line of a holomorphic function which takes real values at real argument,
315      then the <span class="bold"><strong>complex step derivative</strong></span> can be used.
316      The idea is very simple: Since <span class="emphasis"><em>f</em></span> is complex-differentiable,
317      <span class="emphasis"><em>f(x+ⅈ h) = f(x) + ⅈ hf'(x) - h<sup>2</sup>f''(x) + ��(h<sup>3</sup>)</em></span>.
318      As long as <span class="emphasis"><em>f(x)</em></span> ∈ ℝ, then <span class="emphasis"><em>f'(x)
319      = ℑ f(x+ⅈ h)/h + ��(h<sup>2</sup>)</em></span>. This method requires a single
320      complex function evaluation and is not subject to the catastrophic subtractive
321      cancellation that plagues finite-difference calculations.
322    </p>
323<p>
324      An example usage:
325    </p>
326<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">7.2</span><span class="special">;</span>
327<span class="keyword">double</span> <span class="identifier">e_prime</span> <span class="special">=</span> <span class="identifier">complex_step_derivative</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">exp</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;&gt;,</span> <span class="identifier">x</span><span class="special">);</span>
328</pre>
329<p>
330      References:
331    </p>
332<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
333<li class="listitem">
334          Squire, William, and George Trapp. <span class="emphasis"><em>Using complex variables to
335          estimate derivatives of real functions.</em></span> Siam Review 40.1 (1998):
336          110-112.
337        </li>
338<li class="listitem">
339          Fornberg, Bengt. <span class="emphasis"><em>Generation of finite difference formulas on
340          arbitrarily spaced grids.</em></span> Mathematics of computation 51.184
341          (1988): 699-706.
342        </li>
343<li class="listitem">
344          Corless, Robert M., and Nicolas Fillion. <span class="emphasis"><em>A graduate introduction
345          to numerical methods.</em></span> AMC 10 (2013): 12.
346        </li>
347</ul></div>
348</div>
349<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
350<td align="left"></td>
351<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
352      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
353      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
354      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
355      Daryle Walker and Xiaogang Zhang<p>
356        Distributed under the Boost Software License, Version 1.0. (See accompanying
357        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
358      </p>
359</div></td>
360</tr></table>
361<hr>
362<div class="spirit-nav">
363<a accesskey="p" href="wavelet_transforms.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="autodiff.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
364</div>
365</body>
366</html>
367