• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* test_piecewise_linear.cpp
2  *
3  * Copyright Steven Watanabe 2011
4  * Distributed under the Boost Software License, Version 1.0. (See
5  * accompanying file LICENSE_1_0.txt or copy at
6  * http://www.boost.org/LICENSE_1_0.txt)
7  *
8  * $Id$
9  *
10  */
11 
12 #include <boost/random/piecewise_linear_distribution.hpp>
13 #include <boost/random/uniform_int.hpp>
14 #include <boost/random/mersenne_twister.hpp>
15 #include <boost/random/variate_generator.hpp>
16 #include <boost/lexical_cast.hpp>
17 #include <boost/exception/diagnostic_information.hpp>
18 #include <boost/range/algorithm/lower_bound.hpp>
19 #include <boost/range/numeric.hpp>
20 #include <vector>
21 #include <iostream>
22 #include <iomanip>
23 
24 #include "statistic_tests.hpp"
25 
26 class piecewise_linear
27 {
28 public:
piecewise_linear(const std::vector<double> & intervals,const std::vector<double> & weights)29     piecewise_linear(const std::vector<double>& intervals, const std::vector<double>& weights)
30       : intervals(intervals),
31         weights(weights),
32         cumulative(1, 0.0)
33     {
34         for(std::size_t i = 0; i < weights.size() - 1; ++i) {
35             cumulative.push_back((weights[i] + weights[i + 1]) / 2);
36         }
37         boost::partial_sum(cumulative, cumulative.begin());
38         double sum = cumulative.back();
39         for(std::vector<double>::iterator iter = cumulative.begin(), end = cumulative.end();
40             iter != end; ++iter)
41         {
42             *iter /= sum;
43         }
44         for(std::vector<double>::iterator iter = this->weights.begin(), end = this->weights.end();
45             iter != end; ++iter)
46         {
47             *iter /= sum;
48         }
49         assert(this->weights.size() == this->intervals.size());
50         assert(this->weights.size() == this->cumulative.size());
51     }
52 
cdf(double x) const53     double cdf(double x) const
54     {
55         std::size_t index = boost::lower_bound(intervals, x) - intervals.begin();
56         if(index == 0) return 0;
57         else if(index == intervals.size()) return 1;
58         else {
59             double start = cumulative[index - 1];
60             double lower_weight = weights[index - 1];
61             double upper_weight = weights[index];
62             double lower = intervals[index - 1];
63             double upper = intervals[index];
64             double mid_weight = (lower_weight * (upper - x) + upper_weight * (x - lower)) / (upper - lower);
65             double segment_area = (x - lower) * (mid_weight + lower_weight) / 2;
66             return start + segment_area;
67         }
68     }
69 private:
70     std::vector<double> intervals;
71     std::vector<double> weights;
72     std::vector<double> cumulative;
73 };
74 
cdf(const piecewise_linear & dist,double x)75 double cdf(const piecewise_linear& dist, double x)
76 {
77     return dist.cdf(x);
78 }
79 
do_test(int n,int max)80 bool do_test(int n, int max) {
81     std::cout << "running piecewise_linear(p0, p1, ..., p" << n-1 << ")" << " " << max << " times: " << std::flush;
82 
83     std::vector<double> weights;
84     {
85         boost::mt19937 egen;
86         for(int i = 0; i < n; ++i) {
87             weights.push_back(egen());
88         }
89     }
90     std::vector<double> intervals;
91     for(int i = 0; i < n; ++i) {
92         intervals.push_back(i);
93     }
94 
95     piecewise_linear expected(intervals, weights);
96 
97     boost::random::piecewise_linear_distribution<> dist(intervals, weights);
98     boost::mt19937 gen;
99     kolmogorov_experiment test(max);
100     boost::variate_generator<boost::mt19937&, boost::random::piecewise_linear_distribution<> > vgen(gen, dist);
101 
102     double prob = test.probability(test.run(vgen, expected));
103 
104     bool result = prob < 0.99;
105     const char* err = result? "" : "*";
106     std::cout << std::setprecision(17) << prob << err << std::endl;
107 
108     std::cout << std::setprecision(6);
109 
110     return result;
111 }
112 
do_tests(int repeat,int max_n,int trials)113 bool do_tests(int repeat, int max_n, int trials) {
114     boost::mt19937 gen;
115     boost::uniform_int<> idist(2, max_n);
116     int errors = 0;
117     for(int i = 0; i < repeat; ++i) {
118         if(!do_test(idist(gen), trials)) {
119             ++errors;
120         }
121     }
122     if(errors != 0) {
123         std::cout << "*** " << errors << " errors detected ***" << std::endl;
124     }
125     return errors == 0;
126 }
127 
usage()128 int usage() {
129     std::cerr << "Usage: test_piecewise_linear -r <repeat> -n <max n> -t <trials>" << std::endl;
130     return 2;
131 }
132 
133 template<class T>
handle_option(int & argc,char ** & argv,char opt,T & value)134 bool handle_option(int& argc, char**& argv, char opt, T& value) {
135     if(argv[0][1] == opt && argc > 1) {
136         --argc;
137         ++argv;
138         value = boost::lexical_cast<T>(argv[0]);
139         return true;
140     } else {
141         return false;
142     }
143 }
144 
main(int argc,char ** argv)145 int main(int argc, char** argv) {
146     int repeat = 10;
147     int max_n = 10;
148     int trials = 1000000;
149 
150     if(argc > 0) {
151         --argc;
152         ++argv;
153     }
154     while(argc > 0) {
155         if(argv[0][0] != '-') return usage();
156         else if(!handle_option(argc, argv, 'r', repeat)
157              && !handle_option(argc, argv, 'n', max_n)
158              && !handle_option(argc, argv, 't', trials)) {
159             return usage();
160         }
161         --argc;
162         ++argv;
163     }
164 
165     try {
166         if(do_tests(repeat, max_n, trials)) {
167             return 0;
168         } else {
169             return EXIT_FAILURE;
170         }
171     } catch(...) {
172         std::cerr << boost::current_exception_diagnostic_information() << std::endl;
173         return EXIT_FAILURE;
174     }
175 }
176