# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor, Parameter, context from mindspore.nn import TrainOneStepCell from mindspore.nn.optim import FTRL, LazyAdam from mindspore.ops import operations as P context.set_context(enable_sparse=True, mode=context.GRAPH_MODE, device_target="Ascend") class NetWithSparseGatherV2(nn.Cell): def __init__(self): super(NetWithSparseGatherV2, self).__init__() self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1") self.weight2 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight2") self.axis = 0 self.gather = P.SparseGatherV2() def construct(self, indices, label): return self.gather(self.weight1, indices, self.axis) + self.weight2 @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_ftrl_net(): indices = Tensor(np.array([0, 0, 1]).astype(np.int32)) label = Tensor(np.zeros([2, 1, 2]).astype(np.float32)) net = NetWithSparseGatherV2() optimizer = FTRL(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0) optimizer.target = 'Ascend' train_network = TrainOneStepCell(net, optimizer) output = train_network(indices, label) np.allclose(output.asnumpy(), np.array([[[2, 2]], [[2, 2]], [[2, 2]]])) np.allclose(net.weight1.asnumpy(), np.array([[[0.7884067, 0.7884067]], [[0.68213105, 0.68213105]], [[1.0, 1.0]]])) np.allclose(net.weight2.asnumpy(), np.array([[[0.6821311, 0.6821311]], [[0.6821311, 0.6821311]], [[0.6821311, 0.6821311]]])) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_lazy_adam_net(): indices = Tensor(np.array([0, 0, 1]).astype(np.int32)) label = Tensor(np.zeros([2, 1, 2]).astype(np.float32)) net = NetWithSparseGatherV2() optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0) optimizer.target = 'Ascend' train_network = TrainOneStepCell(net, optimizer) output = train_network(indices, label) np.allclose(output.asnumpy(), np.array([[[2, 2]], [[2, 2]], [[2, 2]]])) np.allclose(net.weight1.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[1.0, 1.0]]])) np.allclose(net.weight2.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[0.9, 0.9]]])) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_lazy_adam_net_sparse(): indices = Tensor(np.array([0, 0, 1]).astype(np.int32)) label = Tensor(np.zeros([2, 1, 2]).astype(np.float32)) net = NetWithSparseGatherV2() optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0) # will use sparse_opt in LazyAdam optimizer.target = 'CPU' train_network = TrainOneStepCell(net, optimizer) output = train_network(indices, label) np.allclose(output.asnumpy(), np.array([[[2, 2]], [[2, 2]], [[2, 2]]])) np.allclose(net.weight1.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[1.0, 1.0]]])) np.allclose(net.weight2.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[0.9, 0.9]]]))