# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import mindspore.nn as nn from mindspore.ops import operations as P from mindspore.common.initializer import TruncatedNormal def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): """weight initial for conv layer""" weight = weight_variable() return nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="valid", ) def fc_with_initialize(input_channels, out_channels): """weight initial for fc layer""" weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) def weight_variable(): """weight initial""" return TruncatedNormal(0.02) class LeNet5(nn.Cell): def __init__(self, num_class=10, channel=3): super(LeNet5, self).__init__() self.num_class = num_class self.conv1 = conv(channel, 6, 5) self.conv2 = conv(6, 16, 5) self.fc1 = fc_with_initialize(16 * 5 * 5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, self.num_class) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x class StartFLJob(nn.Cell): def __init__(self, data_size): super(StartFLJob, self).__init__() self.start_fl_job = P.StartFLJob(data_size) def construct(self): return self.start_fl_job() class UpdateAndGetModel(nn.Cell): def __init__(self, weights): super(UpdateAndGetModel, self).__init__() self.update_model = P.UpdateModel() self.get_model = P.GetModel() self.weights = weights def construct(self): self.update_model(self.weights) get_model = self.get_model(self.weights) return get_model