# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net1(nn.Cell): def __init__(self): super(Net1, self).__init__() self.relu1 = P.ReLU() self.relu2 = P.ReLU() self.mul = P.Mul() self.depend = P.Depend() def construct(self, x, y): a = self.relu1(x) y = self.depend(y, a) b = self.relu2(y) c = self.mul(a, b) return c, a class Net2(nn.Cell): def __init__(self): super(Net2, self).__init__() self.relu1 = P.ReLU() self.relu2 = P.ReLU().add_prim_attr("primitive_target", "CPU") self.mul = P.Mul() self.depend = P.Depend() def construct(self, x, y): a = self.relu1(x) y = self.depend(y, a) b = self.relu2(y) c = self.mul(a, b) return c, a def test_net(): x = np.random.randn(2, 3, 3, 4).astype(np.float32) y = np.random.randn(2, 3, 3, 4).astype(np.float32) net1 = Net1() output1 = net1(Tensor(x), Tensor(y)) net2 = Net2() output2 = net2(Tensor(x), Tensor(y)) assert np.allclose(output1[0].asnumpy(), output2[0].asnumpy()) print("##success##") if __name__ == "__main__": test_net()