# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np import mindspore.nn as nn import mindspore.ops as ops from mindspore import context, Tensor, Parameter from mindspore.nn import TrainOneStepCell from mindspore.nn.optim import Momentum from mindspore.ops.composite import GradOperation from mindspore.common import ParameterTuple context.set_context(mode=context.GRAPH_MODE) class _Grad(nn.Cell): def __init__(self, grad, network, wrt_params=False, real_inputs_count=None): super().__init__() self.network = network self.grad = grad self.sens_param = self.grad.sens_param self.wrt_params = wrt_params self.real_inputs_count = real_inputs_count if self.wrt_params: self.params = ParameterTuple(self.network.trainable_params()) def construct(self, *inputs): if self.real_inputs_count is None or self.sens_param is False: if self.wrt_params: return self.grad(self.network, self.params)(*inputs) return self.grad(self.network)(*inputs) real_inputs = inputs[:self.real_inputs_count] sense_param_inputs = inputs[self.real_inputs_count:] if self.wrt_params: return self.grad(self.network, self.params)(*real_inputs, sense_param_inputs) return self.grad(self.network)(*real_inputs, sense_param_inputs) class GradOfFirstInput(_Grad): """ get grad of first input """ def __init__(self, network, sens_param=True, real_inputs_count=None): super().__init__(grad=GradOperation(sens_param=sens_param), network=network, real_inputs_count=real_inputs_count) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.mul = ops.Mul() self.add = ops.TensorAdd() weight_np = np.array([2]).astype(np.float32) bias_np = np.array([1]).astype(np.float32) self.weight = Parameter(Tensor(weight_np), name='weight', requires_grad=True) self.bias = Parameter(Tensor(bias_np), name="bias", requires_grad=True) def construct(self, x): xw = self.mul(x, self.weight) output = self.add(xw, self.bias) return output class WithLossCellLocal(nn.Cell): def __init__(self, grad, loss): super(WithLossCellLocal, self).__init__(auto_prefix=False) self.grad = grad self.loss = loss def construct(self, data, label): out = self.grad(data) return self.loss(out, label) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu_training @pytest.mark.env_onecard def test_high_grad_train(): x_pure = np.random.randint(-10, 100, 32) x_train = x_pure.astype(np.float32) y_noise = 3 * x_pure + 2 + np.random.randn(32) / 10 y_train = y_noise.astype(np.float32) net = Net() grad_net = GradOfFirstInput(net, sens_param=False) epoch = 2 momentum = 0.0 learning_rate = 0.001 optimizer = Momentum(filter(lambda x: x.requires_grad, grad_net.get_parameters()), learning_rate, momentum) criterion = nn.loss.MSELoss() net_with_criterion = WithLossCellLocal(grad_net, criterion) train_network = TrainOneStepCell(net_with_criterion, optimizer) train_network.set_train() for i in range(epoch): train_network(Tensor([x_train[i]]), Tensor([y_train[i]]))