# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn import mindspore from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class SubNet(nn.Cell): def __init__(self): super(SubNet, self).__init__() self.sub = P.Sub() def construct(self, x, y): return self.sub(x, y) class DivNet(nn.Cell): def __init__(self): super(DivNet, self).__init__() self.div = P.Div() def construct(self, x, y): return self.div(x, y) class FloorDivNet(nn.Cell): def __init__(self): super(FloorDivNet, self).__init__() self.floor_div = P.FloorDiv() def construct(self, x, y): return self.floor_div(x, y) class ModNet(nn.Cell): def __init__(self): super(ModNet, self).__init__() self.mod = P.Mod() def construct(self, x, y): return self.mod(x, y) class FloorModNet(nn.Cell): def __init__(self): super(FloorModNet, self).__init__() self.floor_mod = P.FloorMod() def construct(self, x, y): return self.floor_mod(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_sub(): x = np.random.rand(2, 3, 4, 4).astype(np.float32) y = np.random.rand(4, 1).astype(np.float32) net = SubNet() output = net(Tensor(x), Tensor(y, mindspore.float32)) expect_output = x - y assert np.all(output.asnumpy() == expect_output) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_div(): prop = 1 if np.random.random() < 0.5 else -1 x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop y0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop x1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop y1_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop x3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop y3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop x4_np = np.array(768).astype(np.float32) * prop y4_np = np.array(3072.5).astype(np.float32) * prop x5_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop y5_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop x6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop y6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop x7_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop y7_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop x0 = Tensor(x0_np) y0 = Tensor(y0_np) x1 = Tensor(x1_np) y1 = Tensor(y1_np) x2 = Tensor(x2_np) y2 = Tensor(y2_np) x3 = Tensor(x3_np) y3 = Tensor(y3_np) x4 = Tensor(x4_np) y4 = Tensor(y4_np) x5 = Tensor(x5_np) y5 = Tensor(y5_np) x6 = Tensor(x6_np) y6 = Tensor(y6_np) x7 = Tensor(x7_np) y7 = Tensor(y7_np) context.set_context(mode=context.GRAPH_MODE, device_target='CPU') div = DivNet() output0 = div(x0, y0) expect0 = np.divide(x0_np, y0_np) diff0 = output0.asnumpy() - expect0 error0 = np.ones(shape=expect0.shape) * 1.0e-5 assert np.all(diff0 < error0) assert output0.shape == expect0.shape output1 = div(x1, y1) expect1 = np.divide(x1_np, y1_np) diff1 = output1.asnumpy() - expect1 error1 = np.ones(shape=expect1.shape) * 1.0e-5 assert np.all(diff1 < error1) assert output1.shape == expect1.shape output2 = div(x2, y2) expect2 = np.divide(x2_np, y2_np).astype(np.float16) diff2 = output2.asnumpy() - expect2 error2 = np.ones(shape=expect2.shape) * 1.0e-5 assert np.all(diff2 < error2) assert output2.shape == expect2.shape output3 = div(x3, y3) expect3 = np.divide(x3_np, y3_np) diff3 = output3.asnumpy() - expect3 error3 = np.ones(shape=expect3.shape) * 1.0e-5 assert np.all(diff3 < error3) assert output3.shape == expect3.shape output4 = div(x4, y4) expect4 = np.divide(x4_np, y4_np) diff4 = output4.asnumpy() - expect4 error4 = np.ones(shape=expect4.shape) * 1.0e-5 assert np.all(diff4 < error4) assert output4.shape == expect4.shape output5 = div(x5, y5) expect5 = x5_np // y5_np assert np.all(output5.asnumpy() == expect5) output6 = div(x6, y6) expect6 = np.divide(x6_np, y6_np) diff6 = output6.asnumpy() - expect6 error6 = np.ones(shape=expect6.shape) * 1.0e-5 assert np.all(diff6 < error6) assert output6.shape == expect6.shape output7 = div(x7, y7) expect7 = np.divide(x7_np, y7_np).astype(np.int64) assert np.all(output7.asnumpy() == expect7) assert output7.shape == expect7.shape @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_floor_div(): prop = 1 if np.random.random() < 0.5 else -1 x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop y0_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop x1_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop y1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop x3_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop y3_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop x4_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop y4_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop x0 = Tensor(x0_np) y0 = Tensor(y0_np) x1 = Tensor(x1_np) y1 = Tensor(y1_np) x2 = Tensor(x2_np) y2 = Tensor(y2_np) x3 = Tensor(x3_np) y3 = Tensor(y3_np) x4 = Tensor(x4_np) y4 = Tensor(y4_np) context.set_context(mode=context.GRAPH_MODE, device_target='CPU') floor_div = FloorDivNet() output0 = floor_div(x0, y0) expect0 = np.floor_divide(x0_np, y0_np) diff0 = output0.asnumpy() - expect0 error0 = np.ones(shape=expect0.shape) * 1.0e-5 assert np.all(diff0 < error0) assert output0.shape == expect0.shape output1 = floor_div(x1, y1) expect1 = np.floor_divide(x1_np, y1_np) diff1 = output1.asnumpy() - expect1 error1 = np.ones(shape=expect1.shape) * 1.0e-5 assert np.all(diff1 < error1) assert output1.shape == expect1.shape output2 = floor_div(x2, y2) expect2 = np.floor_divide(x2_np, y2_np).astype(np.float16) diff2 = output2.asnumpy() - expect2 error2 = np.ones(shape=expect2.shape) * 1.0e-5 assert np.all(diff2 < error2) assert output2.shape == expect2.shape output3 = floor_div(x3, y3) expect3 = np.floor_divide(x3_np, y3_np) diff3 = output3.asnumpy() - expect3 error3 = np.ones(shape=expect3.shape) * 1.0e-5 assert np.all(diff3 < error3) assert output3.shape == expect3.shape output4 = floor_div(x4, y4) expect4 = np.floor_divide(x4_np, y4_np) diff4 = output4.asnumpy() - expect4 error4 = np.ones(shape=expect4.shape) * 1.0e-5 assert np.all(diff4 < error4) assert output4.shape == expect4.shape @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_mod(): prop = 1 if np.random.random() < 0.5 else -1 x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop y0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop x1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop y1_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop x3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop y3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop x4_np = np.array(768).astype(np.float32) * prop y4_np = np.array(3072.5).astype(np.float32) * prop x5_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop y5_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop x6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop y6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop x7_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop y7_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop x0 = Tensor(x0_np) y0 = Tensor(y0_np) x1 = Tensor(x1_np) y1 = Tensor(y1_np) x2 = Tensor(x2_np) y2 = Tensor(y2_np) x3 = Tensor(x3_np) y3 = Tensor(y3_np) x4 = Tensor(x4_np) y4 = Tensor(y4_np) x5 = Tensor(x5_np) y5 = Tensor(y5_np) x6 = Tensor(x6_np) y6 = Tensor(y6_np) x7 = Tensor(x7_np) y7 = Tensor(y7_np) context.set_context(mode=context.GRAPH_MODE, device_target='CPU') mod = ModNet() output0 = mod(x0, y0) expect0 = np.mod(x0_np, y0_np) diff0 = output0.asnumpy() - expect0 error0 = np.ones(shape=expect0.shape) * 1.0e-5 assert np.all(diff0 < error0) assert output0.shape == expect0.shape output1 = mod(x1, y1) expect1 = np.mod(x1_np, y1_np) diff1 = output1.asnumpy() - expect1 error1 = np.ones(shape=expect1.shape) * 1.0e-5 assert np.all(diff1 < error1) assert output1.shape == expect1.shape output2 = mod(x2, y2) expect2 = np.mod(x2_np, y2_np).astype(np.float16) diff2 = output2.asnumpy() - expect2 error2 = np.ones(shape=expect2.shape) * 1.0e-5 assert np.all(diff2 < error2) assert output2.shape == expect2.shape output3 = mod(x3, y3) expect3 = np.mod(x3_np, y3_np) diff3 = output3.asnumpy() - expect3 error3 = np.ones(shape=expect3.shape) * 1.0e-5 assert np.all(diff3 < error3) assert output3.shape == expect3.shape output4 = mod(x4, y4) expect4 = np.mod(x4_np, y4_np) diff4 = output4.asnumpy() - expect4 error4 = np.ones(shape=expect4.shape) * 1.0e-5 assert np.all(diff4 < error4) assert output4.shape == expect4.shape output5 = mod(x5, y5) expect5 = np.mod(x5_np, y5_np) assert np.all(output5.asnumpy() == expect5) assert output5.shape == expect5.shape output6 = mod(x6, y6) expect6 = np.mod(x6_np, y6_np) diff6 = output6.asnumpy() - expect6 error6 = np.ones(shape=expect6.shape) * 1.0e-5 assert np.all(diff6 < error6) assert output6.shape == expect6.shape output7 = mod(x7, y7) expect7 = np.mod(x7_np, y7_np).astype(np.int64) assert np.all(output7.asnumpy() == expect7) assert output6.shape == expect6.shape @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_floor_mod(): prop = 1 if np.random.random() < 0.5 else -1 x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop y0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop x1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop y1_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop x3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop y3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop x4_np = np.array(768).astype(np.float32) * prop y4_np = np.array(3072.5).astype(np.float32) * prop x5_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop y5_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop x6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop y6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop x7_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop y7_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop x0 = Tensor(x0_np) y0 = Tensor(y0_np) x1 = Tensor(x1_np) y1 = Tensor(y1_np) x2 = Tensor(x2_np) y2 = Tensor(y2_np) x3 = Tensor(x3_np) y3 = Tensor(y3_np) x4 = Tensor(x4_np) y4 = Tensor(y4_np) x5 = Tensor(x5_np) y5 = Tensor(y5_np) x6 = Tensor(x6_np) y6 = Tensor(y6_np) x7 = Tensor(x7_np) y7 = Tensor(y7_np) context.set_context(mode=context.GRAPH_MODE, device_target='CPU') floor_mod = FloorModNet() output0 = floor_mod(x0, y0) expect0 = np.mod(x0_np, y0_np) diff0 = output0.asnumpy() - expect0 error0 = np.ones(shape=expect0.shape) * 1.0e-5 assert np.all(diff0 < error0) assert output0.shape == expect0.shape output1 = floor_mod(x1, y1) expect1 = np.mod(x1_np, y1_np) diff1 = output1.asnumpy() - expect1 error1 = np.ones(shape=expect1.shape) * 1.0e-5 assert np.all(diff1 < error1) assert output1.shape == expect1.shape output2 = floor_mod(x2, y2) expect2 = np.mod(x2_np, y2_np).astype(np.float16) diff2 = output2.asnumpy() - expect2 error2 = np.ones(shape=expect2.shape) * 1.0e-5 assert np.all(diff2 < error2) assert output2.shape == expect2.shape output3 = floor_mod(x3, y3) expect3 = np.mod(x3_np, y3_np) diff3 = output3.asnumpy() - expect3 error3 = np.ones(shape=expect3.shape) * 1.0e-5 assert np.all(diff3 < error3) assert output3.shape == expect3.shape output4 = floor_mod(x4, y4) expect4 = np.mod(x4_np, y4_np) diff4 = output4.asnumpy() - expect4 error4 = np.ones(shape=expect4.shape) * 1.0e-5 assert np.all(diff4 < error4) assert output4.shape == expect4.shape output5 = floor_mod(x5, y5) expect5 = np.mod(x5_np, y5_np) assert np.all(output5.asnumpy() == expect5) assert output5.shape == expect5.shape output6 = floor_mod(x6, y6) expect6 = np.mod(x6_np, y6_np) diff6 = output6.asnumpy() - expect6 error6 = np.ones(shape=expect6.shape) * 1.0e-5 assert np.all(diff6 < error6) assert output6.shape == expect6.shape output7 = floor_mod(x7, y7) expect7 = np.mod(x7_np, y7_np).astype(np.int64) assert np.all(output7.asnumpy() == expect7) assert output6.shape == expect6.shape test_sub() test_div() test_floor_div() test_mod() test_floor_mod()