# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn import mindspore.context as context from mindspore.common import dtype as mstype context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class NetGatherV2_axis0(nn.Cell): def __init__(self): super(NetGatherV2_axis0, self).__init__() self.gatherv2 = P.Gather() def construct(self, params, indices): return self.gatherv2(params, indices, 0) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_gatherv2_axis0(): x = Tensor(np.arange(3 * 2 * 2).reshape(3, 2, 2), mstype.float32) indices = Tensor(np.array([1, 2]), mstype.int32) gatherv2 = NetGatherV2_axis0() ms_output = gatherv2(x, indices) print("output:\n", ms_output) expect = np.array([[[4., 5.], [6., 7.]], [[8., 9.], [10., 11.]]]) error = np.ones(shape=ms_output.asnumpy().shape) * 1.0e-6 diff = ms_output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error) class NetGatherV2_axis1(nn.Cell): def __init__(self): super(NetGatherV2_axis1, self).__init__() self.gatherv2 = P.Gather() def construct(self, params, indices): return self.gatherv2(params, indices, 1) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_gatherv2_axis1(): x = Tensor(np.arange(2 * 3 * 2).reshape(2, 3, 2), mstype.float32) indices = Tensor(np.array([1, 2]), mstype.int32) gatherv2 = NetGatherV2_axis1() ms_output = gatherv2(x, indices) print("output:\n", ms_output) expect = np.array([[[2., 3.], [4., 5.]], [[8., 9.], [10., 11.]]]) error = np.ones(shape=ms_output.asnumpy().shape) * 1.0e-6 diff = ms_output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error) class NetGatherV2_axisN1(nn.Cell): def __init__(self): super(NetGatherV2_axisN1, self).__init__() self.gatherv2 = P.Gather() def construct(self, params, indices): return self.gatherv2(params, indices, -1) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_gatherv2_axisN1(): x = Tensor(np.arange(2 * 2 * 3).reshape(2, 2, 3), mstype.float32) indices = Tensor(np.array([1, 2]), mstype.int32) gatherv2 = NetGatherV2_axisN1() ms_output = gatherv2(x, indices) print("output:\n", ms_output) expect = np.array([[[1., 2.], [4., 5.]], [[7., 8.], [10., 11.]]]) error = np.ones(shape=ms_output.asnumpy().shape) * 1.0e-6 diff = ms_output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error) if __name__ == '__main__': test_gatherv2_axis0() test_gatherv2_axis1() test_gatherv2_axisN1()