# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import math import pytest import numpy as np import mindspore.nn as nn import mindspore.context as context from mindspore.common.api import ms_function from mindspore.common.initializer import initializer from mindspore.ops import composite as C from mindspore.ops import operations as P from mindspore.common.tensor import Tensor from mindspore.common.parameter import ParameterTuple, Parameter context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class StackLSTM(nn.Cell): """ Stack multi-layers LSTM together. """ def __init__(self, input_size, hidden_size, num_layers=1, has_bias=True, batch_first=False, dropout=0.0, bidirectional=False): super(StackLSTM, self).__init__() self.num_layers = num_layers self.batch_first = batch_first self.transpose = P.Transpose() # direction number num_directions = 2 if bidirectional else 1 # input_size list input_size_list = [input_size] for i in range(num_layers - 1): input_size_list.append(hidden_size * num_directions) # layers layers = [] for i in range(num_layers): layers.append(nn.LSTMCell(input_size=input_size_list[i], hidden_size=hidden_size, has_bias=has_bias, batch_first=batch_first, bidirectional=bidirectional, dropout=dropout)) # weights weights = [] for i in range(num_layers): # weight size weight_size = (input_size_list[i] + hidden_size) * num_directions * hidden_size * 4 if has_bias: bias_size = num_directions * hidden_size * 4 weight_size = weight_size + bias_size # numpy weight stdv = 1 / math.sqrt(hidden_size) w_np = np.random.uniform(-stdv, stdv, (weight_size, 1, 1)).astype(np.float32) # lstm weight weights.append(Parameter(initializer(Tensor(w_np), w_np.shape), name="weight" + str(i))) # self.lstms = layers self.weight = ParameterTuple(tuple(weights)) def construct(self, x, hx): """construct""" if self.batch_first: x = self.transpose(x, (1, 0, 2)) # stack lstm h, c = hx hn = cn = None for i in range(self.num_layers): x, hn, cn, _, _ = self.lstms[i](x, h[i], c[i], self.weight[i]) if self.batch_first: x = self.transpose(x, (1, 0, 2)) return x, (hn, cn) class LstmNet(nn.Cell): def __init__(self, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout): super(LstmNet, self).__init__() num_directions = 1 if bidirectional: num_directions = 2 self.lstm = StackLSTM(input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) input_np = np.array([[[0.6755, -1.6607, 0.1367], [0.4276, -0.7850, -0.3758]], [[-0.6424, -0.6095, 0.6639], [0.7918, 0.4147, -0.5089]], [[-1.5612, 0.0120, -0.7289], [-0.6656, -0.6626, -0.5883]], [[-0.9667, -0.6296, -0.7310], [0.1026, -0.6821, -0.4387]], [[-0.4710, 0.6558, -0.3144], [-0.8449, -0.2184, -0.1806]] ]).astype(np.float32) self.x = Tensor(input_np) self.h = Tensor(np.array([0., 0., 0., 0.]).reshape((num_directions, batch_size, hidden_size)).astype( np.float32)) self.c = Tensor(np.array([0., 0., 0., 0.]).reshape((num_directions, batch_size, hidden_size)).astype( np.float32)) self.h = tuple((self.h,)) self.c = tuple((self.c,)) wih = np.array([[3.4021e-01, -4.6622e-01, 4.5117e-01], [-6.4257e-02, -2.4807e-01, 1.3550e-02], # i [-3.2140e-01, 5.5578e-01, 6.3589e-01], [1.6547e-01, -7.9030e-02, -2.0045e-01], [-6.9863e-01, 5.9773e-01, -3.9062e-01], [-3.0253e-01, -1.9464e-01, 7.0591e-01], [-4.0835e-01, 3.6751e-01, 4.7989e-01], [-5.6894e-01, -5.0359e-01, 4.7491e-01]]).astype(np.float32).reshape([1, -1]) whh = np.array([[-0.4820, -0.2350], [-0.1195, 0.0519], [0.2162, -0.1178], [0.6237, 0.0711], [0.4511, -0.3961], [-0.5962, 0.0906], [0.1867, -0.1225], [0.1831, 0.0850]]).astype(np.float32).reshape([1, -1]) bih = np.zeros((1, 8)).astype(np.float32) w_np = np.concatenate((wih, whh, bih), axis=1).reshape([-1, 1, 1]) self.w = Parameter(initializer(Tensor(w_np), w_np.shape), name='w') self.lstm.weight = ParameterTuple((self.w,)) @ms_function def construct(self): return self.lstm(self.x, (self.h, self.c)) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_lstm(): seq_len = 5 batch_size = 2 input_size = 3 hidden_size = 2 num_layers = 1 has_bias = True bidirectional = False dropout = 0.0 num_directions = 1 if bidirectional: num_directions = 2 net = LstmNet(batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) y, (h, c) = net() print(y) print(c) print(h) expect_y = [[[-0.17992045, 0.07819052], [-0.10745212, -0.06291768]], [[-0.28830513, 0.30579978], [-0.07570618, -0.08868407]], [[-0.00814095, 0.16889746], [0.02814853, -0.11208838]], [[0.08157863, 0.06088024], [-0.04227093, -0.11514835]], [[0.18908429, -0.02963362], [0.09106826, -0.00602506]]] expect_h = [[[0.18908429, -0.02963362], [0.09106826, -0.00602506]]] expect_c = [[[0.3434288, -0.06561527], [0.16838229, -0.00972614]]] diff_y = y.asnumpy() - expect_y error_y = np.ones([seq_len, batch_size, hidden_size]) * 1.0e-4 assert np.all(diff_y < error_y) assert np.all(-diff_y < error_y) diff_h = h.asnumpy() - expect_h error_h = np.ones([num_layers * num_directions, batch_size, hidden_size]) * 1.0e-4 assert np.all(diff_h < error_h) assert np.all(-diff_h < error_h) diff_c = c.asnumpy() - expect_c error_c = np.ones([num_layers * num_directions, batch_size, hidden_size]) * 1.0e-4 assert np.all(diff_c < error_c) assert np.all(-diff_c < error_c) class MultiLayerBiLstmNet(nn.Cell): def __init__(self, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout): super(MultiLayerBiLstmNet, self).__init__() num_directions = 1 if bidirectional: num_directions = 2 self.lstm = StackLSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, has_bias=has_bias, bidirectional=bidirectional, dropout=dropout) input_np = np.array([[[-0.1887, -0.4144, -0.0235, 0.7489, 0.7522, 0.5969, 0.3342, 1.2198, 0.6786, -0.9404], [-0.8643, -1.6835, -2.4965, 2.8093, 0.1741, 0.2707, 0.7387, -0.0939, -1.7990, 0.4765]], [[-0.5963, -1.2598, -0.7226, 1.1365, -1.7320, -0.7302, 0.1221, -0.2111, -1.6173, -0.0706], [0.8964, 0.1737, -1.0077, -0.1389, 0.4889, 0.4391, 0.7911, 0.3614, -1.9533, -0.9936]], [[0.3260, -1.3312, 0.0601, 1.0726, -1.6010, -1.8733, -1.5775, 1.1579, -0.8801, -0.5742], [-2.2998, -0.6344, -0.5409, -0.9221, -0.6500, 0.1206, 1.5215, 0.7517, 1.3691, 2.0021]], [[-0.1245, -0.3690, 2.1193, 1.3852, -0.1841, -0.8899, -0.3646, -0.8575, -0.3131, 0.2026], [1.0218, -1.4331, 0.1744, 0.5442, -0.7808, 0.2527, 0.1566, 1.1484, -0.7766, -0.6747]], [[-0.6752, 0.9906, -0.4973, 0.3471, -0.1202, -0.4213, 2.0213, 0.0441, 0.9016, 1.0365], [1.2223, -1.3248, 0.1207, -0.8256, 0.1816, 0.7057, -0.3105, 0.5713, 0.2804, -1.0685]]]).astype(np.float32) self.x = Tensor(input_np) self.h0 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)) self.c0 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)) self.h1 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)) self.c1 = Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)) self.h = tuple((self.h0, self.h1)) self.c = tuple((self.c0, self.c1)) input_size_list = [input_size, hidden_size * num_directions] weights = [] bias_size = 0 if not has_bias else num_directions * hidden_size * 4 for i in range(num_layers): weight_size = (input_size_list[i] + hidden_size) * num_directions * hidden_size * 4 w_np = np.ones([weight_size, 1, 1]).astype(np.float32) * 0.02 if has_bias: bias_np = np.zeros([bias_size, 1, 1]).astype(np.float32) w_np = np.concatenate([w_np, bias_np], axis=0) weights.append(Parameter(initializer(Tensor(w_np), w_np.shape), name='weight' + str(i))) self.lstm.weight = weights @ms_function def construct(self): return self.lstm(self.x, (self.h, self.c)) @pytest.mark.level1 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_multi_layer_bilstm(): batch_size = 2 input_size = 10 hidden_size = 2 num_layers = 2 has_bias = True bidirectional = True dropout = 0.0 net = MultiLayerBiLstmNet(batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) y, (h, c) = net() print(y) print(h) print(c) class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.network = network self.weights = ParameterTuple(network.trainable_params()) self.grad = C.GradOperation(get_by_list=True, sens_param=True) @ms_function def construct(self, output_grad): weights = self.weights grads = self.grad(self.network, weights)(output_grad) return grads class Net(nn.Cell): def __init__(self, seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout): super(Net, self).__init__() num_directions = 1 if bidirectional: num_directions = 2 input_np = np.array([[[0.6755, -1.6607, 0.1367], [0.4276, -0.7850, -0.3758]], [[-0.6424, -0.6095, 0.6639], [0.7918, 0.4147, -0.5089]], [[-1.5612, 0.0120, -0.7289], [-0.6656, -0.6626, -0.5883]], [[-0.9667, -0.6296, -0.7310], [0.1026, -0.6821, -0.4387]], [[-0.4710, 0.6558, -0.3144], [-0.8449, -0.2184, -0.1806]] ]).astype(np.float32) self.x = Parameter(initializer(Tensor(input_np), [seq_len, batch_size, input_size]), name='x') self.hlist = [] self.clist = [] self.hlist.append(Parameter(initializer( Tensor( np.array([0.1, 0.1, 0.1, 0.1]).reshape((num_directions, batch_size, hidden_size)).astype( np.float32)), [num_directions, batch_size, hidden_size]), name='h')) self.clist.append(Parameter(initializer( Tensor( np.array([0.2, 0.2, 0.2, 0.2]).reshape((num_directions, batch_size, hidden_size)).astype( np.float32)), [num_directions, batch_size, hidden_size]), name='c')) self.h = ParameterTuple(tuple(self.hlist)) self.c = ParameterTuple(tuple(self.clist)) wih = np.array([[3.4021e-01, -4.6622e-01, 4.5117e-01], [-6.4257e-02, -2.4807e-01, 1.3550e-02], # i [-3.2140e-01, 5.5578e-01, 6.3589e-01], [1.6547e-01, -7.9030e-02, -2.0045e-01], [-6.9863e-01, 5.9773e-01, -3.9062e-01], [-3.0253e-01, -1.9464e-01, 7.0591e-01], [-4.0835e-01, 3.6751e-01, 4.7989e-01], [-5.6894e-01, -5.0359e-01, 4.7491e-01]]).astype(np.float32).reshape([1, -1]) whh = np.array([[-0.4820, -0.2350], [-0.1195, 0.0519], [0.2162, -0.1178], [0.6237, 0.0711], [0.4511, -0.3961], [-0.5962, 0.0906], [0.1867, -0.1225], [0.1831, 0.0850]]).astype(np.float32).reshape([1, -1]) bih = np.zeros((1, 8)).astype(np.float32) w_np = np.concatenate((wih, whh, bih), axis=1).reshape([-1, 1, 1]) self.w = Parameter(initializer(Tensor(w_np), w_np.shape), name='weight0') self.lstm = StackLSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, has_bias=has_bias, bidirectional=bidirectional, dropout=dropout) self.lstm.weight = ParameterTuple(tuple([self.w])) @ms_function def construct(self): return self.lstm(self.x, (self.h, self.c))[0] @pytest.mark.level1 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_grad(): seq_len = 5 batch_size = 2 input_size = 3 hidden_size = 2 num_layers = 1 has_bias = True bidirectional = False dropout = 0.0 net = Grad(Net(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout)) dy = np.array([[[-3.5471e-01, 7.0540e-01], [2.7161e-01, 1.0865e+00]], [[-4.2431e-01, 1.4955e+00], [-4.0418e-01, -2.3282e-01]], [[-1.3654e+00, 1.9251e+00], [-4.6481e-01, 1.3138e+00]], [[1.2914e+00, -2.3753e-01], [5.3589e-01, -1.0981e-01]], [[-1.6032e+00, -1.8818e-01], [1.0065e-01, 9.2045e-01]]]).astype(np.float32) dx, dhx, dcx, dw = net(Tensor(dy)) print(dx) print(dhx) print(dcx) print(dw) test_multi_layer_bilstm() test_lstm() test_grad()