# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.ops import operations as P from mindspore.ops.composite import GradOperation context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = GradOperation(get_all=True, sens_param=True) self.network = network @ms_function def construct(self, input_, output_grad): return self.grad(self.network)(input_, output_grad) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.ops = P.Neg() def construct(self, x): return self.ops(x) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_net(): x = np.random.randn(2, 3, 3, 4).astype(np.float32) y_expect = -x net = Net() out = net(Tensor(x)) assert (out.asnumpy() == y_expect).all() sens = np.random.randn(2, 3, 3, 4).astype(np.float32) backword_net = Grad(Net()) output = backword_net(Tensor(x), Tensor(sens)) print(len(output)) print(output[0].asnumpy())