# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.ops.operations import _grad_ops as G context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class NetReluGrad(nn.Cell): def __init__(self): super(NetReluGrad, self).__init__() self.relu6_grad = G.ReLU6Grad() self.x = Parameter(initializer(Tensor(np.array([[[[1, 0, 6], [-2, 3, 6], [-3, 1, 8]]]]).astype(np.float32)), [1, 1, 3, 3]), name='x') self.dy = Parameter(initializer(Tensor(np.array([[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]]).astype(np.float32)), [1, 1, 3, 3]), name='dy') def construct(self): return self.relu6_grad(self.dy, self.x) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_relu_grad(): relu_grad = NetReluGrad() output = relu_grad() expect = np.array([[[[1, 0, 3], [0, 5, 6], [0, 8, 0]]]]).astype(np.float32) error = np.ones(shape=[3, 3]) * 1.0e-6 diff = np.abs(output.asnumpy() - expect) assert np.all(diff < error)