# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class NetTan(nn.Cell): def __init__(self): super(NetTan, self).__init__() self.tan = P.Tan() def construct(self, x): return self.tan(x) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_tan(): np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32') input_x = Tensor(np_array) net = NetTan() output = net(input_x) print(output) expect = np.tan(np_array) assert np.allclose(output.asnumpy(), expect)