# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest from cus_add3 import CusAdd3 import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(nn.Cell): """Net definition""" def __init__(self): super(Net, self).__init__() self.add3 = CusAdd3(1.0) def construct(self, input1, input2): return self.add3(input1, input2) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard def test_net(): input1 = np.array([1.0, 4.0, 9.0]).astype(np.float32) input2 = np.array([1.0, 2.0, 3.0]).astype(np.float32) add3_net = Net() output = add3_net(Tensor(input1), Tensor(input2)) expect = np.array([3.0, 7.0, 13.0]).astype(np.float32) assert (output.asnumpy() == expect).all()