# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor, Parameter from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self, param): super(Net, self).__init__() self.var = Parameter(param, name="var") self.assign = P.Assign() def construct(self, param): return self.assign(self.var, param) x = np.array([[1.2, 1], [1, 0]]).astype(np.float32) value = np.array([[1, 2], [3, 4.0]]).astype(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_assign(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") var = Tensor(x) assign = Net(var) output = assign(Tensor(value)) error = np.ones(shape=[2, 2]) * 1.0e-6 diff1 = output.asnumpy() - value diff2 = assign.var.data.asnumpy() - value assert np.all(diff1 < error) assert np.all(-diff1 < error) assert np.all(diff2 < error) assert np.all(-diff2 < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_assign_float64(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") var = Tensor(x.astype(np.float64)) assign = Net(var) output = assign(Tensor(value.astype(np.float64))) error = np.ones(shape=[2, 2]) * 1.0e-6 diff1 = output.asnumpy() - value diff2 = assign.var.data.asnumpy() - value assert np.all(diff1 < error) assert np.all(-diff1 < error) assert np.all(diff2 < error) assert np.all(-diff2 < error)