# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore.common.tensor import Tensor from mindspore.nn import Cell from mindspore.ops import operations as P from mindspore.ops.operations import _inner_ops as inner class NetEqual(Cell): def __init__(self): super(NetEqual, self).__init__() self.Equal = P.Equal() def construct(self, x, y): return self.Equal(x, y) class NetEqualDynamic(Cell): def __init__(self): super(NetEqualDynamic, self).__init__() self.conv = inner.GpuConvertToDynamicShape() self.Equal = P.Equal() def construct(self, x, y): x_conv = self.conv(x) y_conv = self.conv(y) return self.Equal(x_conv, y_conv) class NetNotEqual(Cell): def __init__(self): super(NetNotEqual, self).__init__() self.NotEqual = P.NotEqual() def construct(self, x, y): return self.NotEqual(x, y) class NetGreaterEqual(Cell): def __init__(self): super(NetGreaterEqual, self).__init__() self.GreaterEqual = P.GreaterEqual() def construct(self, x, y): return self.GreaterEqual(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_equal(): x0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32) x0 = Tensor(x0_np) y0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32) y0 = Tensor(y0_np) expect0 = np.equal(x0_np, y0_np) x1_np = np.array([0, 1, 3]).astype(np.float32) x1 = Tensor(x1_np) y1_np = np.array([0]).astype(np.float32) y1 = Tensor(y1_np) expect1 = np.equal(x1_np, y1_np) x2_np = np.array([0, 1, 3]).astype(np.int32) x2 = Tensor(x2_np) y2_np = np.array([0]).astype(np.int32) y2 = Tensor(y2_np) expect2 = np.equal(x2_np, y2_np) x3_np = np.array([0, 1, 3]).astype(np.int16) x3 = Tensor(x3_np) y3_np = np.array([0, 1, -3]).astype(np.int16) y3 = Tensor(y3_np) expect3 = np.equal(x3_np, y3_np) x4_np = np.array([0, 1, 4]).astype(np.uint8) x4 = Tensor(x4_np) y4_np = np.array([0, 1, 3]).astype(np.uint8) y4 = Tensor(y4_np) expect4 = np.equal(x4_np, y4_np) x5_np = np.array([True, False, True]).astype(bool) x5 = Tensor(x5_np) y5_np = np.array([True, False, False]).astype(bool) y5 = Tensor(y5_np) expect5 = np.equal(x5_np, y5_np) x6_np = np.array([0, 1, 4]).astype(np.int8) x6 = Tensor(x6_np) y6_np = np.array([0, 1, 3]).astype(np.int8) y6 = Tensor(y6_np) expect6 = np.equal(x6_np, y6_np) x7_np = np.array([0, 1, 4]).astype(np.int64) x7 = Tensor(x7_np) y7_np = np.array([0, 1, 3]).astype(np.int64) y7 = Tensor(y7_np) expect7 = np.equal(x7_np, y7_np) x8_np = np.array([0, 1, 4]).astype(np.float16) x8 = Tensor(x8_np) y8_np = np.array([0, 1, 3]).astype(np.float16) y8 = Tensor(y8_np) expect8 = np.equal(x8_np, y8_np) x9_np = np.array([0, 1, 4]).astype(np.float64) x9 = Tensor(x9_np) y9_np = np.array([0, 1, 3]).astype(np.float64) y9 = Tensor(y9_np) expect9 = np.equal(x9_np, y9_np) x = [x0, x1, x2, x3, x4, x5, x6, x7, x8, x9] y = [y0, y1, y2, y3, y4, y5, y6, y7, y8, y9] expect = [expect0, expect1, expect2, expect3, expect4, expect5, expect6, expect7, expect8, expect9] context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") equal = NetEqual() for i, xi in enumerate(x): output = equal(xi, y[i]) assert np.all(output.asnumpy() == expect[i]) assert output.shape == expect[i].shape print('test [%d/%d] passed!' % (i, len(x))) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") equal = NetEqual() for i, xi in enumerate(x): output = equal(xi, y[i]) assert np.all(output.asnumpy() == expect[i]) assert output.shape == expect[i].shape print('test [%d/%d] passed!' % (i, len(x))) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_notequal(): x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32)) y0 = Tensor(np.array([[1, 2]]).astype(np.float32)) expect0 = np.array([[True, True], [False, True]]) x1 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int16)) y1 = Tensor(np.array([[1, 2]]).astype(np.int16)) expect1 = np.array([[True, True], [False, True]]) x2 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.uint8)) y2 = Tensor(np.array([[1, 2]]).astype(np.uint8)) expect2 = np.array([[True, True], [False, False]]) x3 = Tensor(np.array([[False, True], [True, False]]).astype(bool)) y3 = Tensor(np.array([[True, False]]).astype(bool)) expect3 = np.array([[True, True], [False, False]]) x4 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float16)) y4 = Tensor(np.array([[1, 2]]).astype(np.float16)) expect4 = np.array([[True, True], [False, True]]) x5 = Tensor(np.array([[2, 1], [1, 0]]).astype(np.int64)) y5 = Tensor(np.array([[1, 2]]).astype(np.int64)) expect5 = np.array([[True, True], [False, True]]) x6 = Tensor(np.array([[2, 1], [1, 0]]).astype(np.int32)) y6 = Tensor(np.array([[1, 2], [1, 2]]).astype(np.int32)) expect6 = np.array([[True, True], [False, True]]) x = [x0, x1, x2, x3, x4, x5, x6] y = [y0, y1, y2, y3, y4, y5, y6] expect = [expect0, expect1, expect2, expect3, expect4, expect5, expect6] context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") notequal = NetNotEqual() for i, xi in enumerate(x): output = notequal(xi, y[i]) assert np.all(output.asnumpy() == expect[i]) assert output.shape == expect[i].shape print('test [%d/%d] passed!' % (i, len(x))) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") notequal = NetNotEqual() for i, xi in enumerate(x): output = notequal(xi, y[i]) assert np.all(output.asnumpy() == expect[i]) assert output.shape == expect[i].shape print('test [%d/%d] passed!' % (i, len(x))) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_greaterqual(): x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32)) y0 = Tensor(np.array([[1, 2], [1, 2]]).astype(np.float32)) expect0 = np.array([[True, False], [True, False]]) x1 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int16)) y1 = Tensor(np.array([[1, 2]]).astype(np.int16)) expect1 = np.array([[True, False], [True, False]]) x2 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.uint8)) y2 = Tensor(np.array([[1, 2]]).astype(np.uint8)) expect2 = np.array([[True, False], [True, True]]) x3 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.float64)) y3 = Tensor(np.array([[1, 2]]).astype(np.float64)) expect3 = np.array([[True, False], [True, True]]) x4 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.float16)) y4 = Tensor(np.array([[1, 2]]).astype(np.float16)) expect4 = np.array([[True, False], [True, True]]) x5 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int64)) y5 = Tensor(np.array([[1, 2]]).astype(np.int64)) expect5 = np.array([[True, False], [True, False]]) x6 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int32)) y6 = Tensor(np.array([[1, 2]]).astype(np.int32)) expect6 = np.array([[True, False], [True, False]]) x7 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int8)) y7 = Tensor(np.array([[1, 2]]).astype(np.int8)) expect7 = np.array([[True, False], [True, False]]) x = [x0, x1, x2, x3, x4, x5, x6, x7] y = [y0, y1, y2, y3, y4, y5, y6, y7] expect = [expect0, expect1, expect2, expect3, expect4, expect5, expect6, expect7] context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") gequal = NetGreaterEqual() for i, xi in enumerate(x): output = gequal(xi, y[i]) assert np.all(output.asnumpy() == expect[i]) assert output.shape == expect[i].shape print('test [%d/%d] passed!' % (i, len(x))) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") gequal = NetGreaterEqual() for i, xi in enumerate(x): output = gequal(xi, y[i]) assert np.all(output.asnumpy() == expect[i]) assert output.shape == expect[i].shape print('test [%d/%d] passed!' % (i, len(x))) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_equal_dynamic_shape(): x0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32) x0 = Tensor(x0_np) y0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32) y0 = Tensor(y0_np) expect0 = np.equal(x0_np, y0_np) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") equal = NetEqualDynamic() output0 = equal(x0, y0) assert np.all(output0.asnumpy() == expect0) assert output0.shape == expect0.shape