# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore import dtype context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class NetLog1p(nn.Cell): def __init__(self): super(NetLog1p, self).__init__() self.log1p = P.Log1p() def construct(self, x): return self.log1p(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_log1p_fp32(): log1p = NetLog1p() x = np.random.rand(3, 8).astype(np.float32) output = log1p(Tensor(x, dtype=dtype.float32)) expect = np.log1p(x) tol = 1e-6 assert (np.abs(output.asnumpy() - expect) < tol).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_log1p_fp16(): log1p = NetLog1p() x = np.random.rand(3, 8).astype(np.float16) output = log1p(Tensor(x, dtype=dtype.float16)) expect = np.log1p(x) tol = 1e-3 assert (np.abs(output.asnumpy() - expect) < tol).all()