# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops.operations import _grad_ops as G from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self, reduction): super(Net, self).__init__() self.loss = P.NLLLoss(reduction=reduction) def construct(self, predict, target, weight): return self.loss(predict, target, weight) class NLLLossGradNet(nn.Cell): def __init__(self, reduction): super(NLLLossGradNet, self).__init__() self.grad = G.NLLLossGrad(reduction=reduction) def construct(self, x, dout_x, target, weight, total_weight): gout = self.grad(x, dout_x, target, weight, total_weight) return gout def nll_loss_template(nptype_input, nptype_weight, reduction): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") nll_loss_net = Net(reduction) predict = Tensor( np.array([[0.53, 0.74, -2.12], [1.29, -0.34, -1.13]]).astype(nptype_input)) target = Tensor(np.array([0, 1]).astype(np.int32)) weight = Tensor(np.array([0.45, -0.32, 1.21]).astype(nptype_weight)) loss, total_weight = nll_loss_net(predict, target, weight) loss_np = loss.asnumpy() total_weight_np = total_weight.asnumpy() expected_tot_weight = np.array(0.129999995) if reduction == 'none': expected_loss = np.array([-0.238499984, -0.108800001]) elif reduction == 'mean': expected_loss = np.array(-2.67153859) elif reduction == 'sum': expected_loss = np.array(-0.347299993) if nptype_input == np.float32 and nptype_weight == np.float32: ertol_loss = 1e-06 elif nptype_input == np.float16 or nptype_weight == np.float16: ertol_loss = 1e-03 if nptype_weight == np.float32: ertol_weight = 1e-06 elif nptype_weight == np.float16: ertol_weight = 1e-03 np.testing.assert_allclose(loss_np, expected_loss, ertol_loss) np.testing.assert_allclose( total_weight_np, expected_tot_weight, ertol_weight) def nll_loss_grad_template(nptype_input, nptype_weight, reduction): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") nll_loss_grad_net = NLLLossGradNet(reduction) x = Tensor( np.array([[0.53, 0.74, -2.12], [1.29, -0.34, -1.13]]).astype(nptype_input)) if reduction == "none": dloss = Tensor( np.array([3.24, -2.13]).astype(nptype_input)) else: dloss = Tensor(np.array(1.23).astype(nptype_input)) target = Tensor(np.array([0, 1]).astype(np.int32)) weight = Tensor(np.array([0.45, -0.32, 1.21]).astype(nptype_weight)) total_weight = Tensor(np.array(0.13).astype(nptype_weight)) dx = nll_loss_grad_net(x, dloss, target, weight, total_weight) dx_np = dx.asnumpy() print(dx) if reduction == "none": dx_expected = np.array([[-1.45799994, 0, 0], [0, -0.681600034, 0]]) elif reduction == "mean": dx_expected = np.array([[-4.25769234, 0, 0], [0, 3.02769232, 0]]) else: dx_expected = np.array([[-0.553499997, 0, 0], [0, 0.393599987, 0]]) if nptype_input == np.float32 and nptype_weight == np.float32: ertol_loss = 1e-06 else: ertol_loss = 1e-02 np.testing.assert_allclose(dx_np, dx_expected, ertol_loss) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nll_loss_no_reduction(): # Four combinations of fp32 and fp16 inputs and weights nll_loss_template(np.float32, np.float32, "none") nll_loss_template(np.float32, np.float16, "none") nll_loss_template(np.float16, np.float32, "none") nll_loss_template(np.float16, np.float16, "none") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nll_loss_mean_reduction(): # Four combinations of fp32 and fp16 inputs and weights nll_loss_template(np.float32, np.float32, "mean") nll_loss_template(np.float32, np.float16, "mean") nll_loss_template(np.float16, np.float32, "mean") nll_loss_template(np.float16, np.float16, "mean") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nll_loss_sum_reduction(): # Four combinations of fp32 and fp16 inputs and weights nll_loss_template(np.float32, np.float32, "sum") nll_loss_template(np.float32, np.float16, "sum") nll_loss_template(np.float16, np.float32, "sum") nll_loss_template(np.float16, np.float16, "sum") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nll_loss_grad_mean_reduction(): # Four combinations of fp32 and fp16 inputs and weights nll_loss_grad_template(np.float32, np.float32, "mean") nll_loss_grad_template(np.float32, np.float16, "mean") nll_loss_grad_template(np.float16, np.float32, "mean") nll_loss_grad_template(np.float16, np.float16, "mean") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nll_loss_grad_sum_reduction(): # Four combinations of fp32 and fp16 inputs and weights nll_loss_grad_template(np.float32, np.float32, "sum") nll_loss_grad_template(np.float32, np.float16, "sum") nll_loss_grad_template(np.float16, np.float32, "sum") nll_loss_grad_template(np.float16, np.float16, "sum") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nll_loss_grad_no_reduction(): # Four combinations of fp32 and fp16 inputs and weights nll_loss_grad_template(np.float32, np.float32, "none") nll_loss_grad_template(np.float32, np.float16, "none") nll_loss_grad_template(np.float16, np.float32, "none") nll_loss_grad_template(np.float16, np.float16, "none")