# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import composite as C from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class SoftplusNet(nn.Cell): def __init__(self): super(SoftplusNet, self).__init__() self.softplus = P.Softplus() def construct(self, x): return self.softplus(x) class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = C.GradOperation(get_all=True, sens_param=True) self.network = network def construct(self, input_data, sens): gout = self.grad(self.network)(input_data, sens) return gout @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_softplusgrad(): x = np.array([0.58401114, 0.68800163, 0.9760397, 0.14702141, 0.46563736, 0.9607501, 0.14567593, 0.12261796, 0.37054458, 0.46421242]).astype(np.float32) dy = np.array([0.5559598, 0.96994054, 0.24770357, 0.34646875, 0.2984393, 0.03287048, 0.55681044, 0.966908, 0.06015943, 0.6099489]).astype(np.float32) x_ms = Tensor(x) dy_ms = Tensor(dy) net = SoftplusNet() grad = Grad(net) output = grad(x_ms, dy_ms) expect = dy * np.exp(x) / (1 + np.exp(x)) assert np.allclose(output[0].asnumpy(), expect, rtol=1e-3) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_softplusgrad_fp16(): np.random.seed(42) x_np = np.random.randn(5, 3, 6).astype(np.float16) dy_np = np.random.randn(5, 3, 6).astype(np.float16) net = SoftplusNet() grad = Grad(net) output = grad(Tensor(x_np), Tensor(dy_np)) expect = dy_np * np.exp(x_np) / (1 + np.exp(x_np)) assert np.allclose(output[0].asnumpy(), expect, rtol=1e-2)