# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn import mindspore.ops.operations.array_ops as P from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter class SpaceToBatchNet(nn.Cell): def __init__(self, nptype, block_size=2, input_shape=(1, 1, 4, 4)): super(SpaceToBatchNet, self).__init__() self.SpaceToBatch = P.SpaceToBatch(block_size=block_size, paddings=[[0, 0], [0, 0]]) input_size = 1 for i in input_shape: input_size = input_size*i data_np = np.arange(input_size).reshape(input_shape).astype(nptype) self.x1 = Parameter(initializer(Tensor(data_np), input_shape), name='x1') @ms_function def construct(self): y1 = self.SpaceToBatch(self.x1) return y1 def SpaceToBatch(nptype, block_size=2, input_shape=(1, 1, 4, 4)): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') input_size = 1 for i in input_shape: input_size = input_size*i expect = np.array([[[[0, 2], [8, 10]]], [[[1, 3], [9, 11]]], [[[4, 6], [12, 14]]], [[[5, 7], [13, 15]]]]).astype(nptype) dts = SpaceToBatchNet(nptype, block_size, input_shape) output = dts() assert (output.asnumpy() == expect).all() def SpaceToBatch_pynative(nptype, block_size=2, input_shape=(1, 1, 4, 4)): context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') input_size = 1 for i in input_shape: input_size = input_size*i expect = np.array([[[[0, 2], [8, 10]]], [[[1, 3], [9, 11]]], [[[4, 6], [12, 14]]], [[[5, 7], [13, 15]]]]).astype(nptype) dts = P.SpaceToBatch(block_size=block_size, paddings=[[0, 0], [0, 0]]) arr_input = Tensor(np.arange(input_size).reshape(input_shape).astype(nptype)) output = dts(arr_input) assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_spacetobatch_graph_float32(): SpaceToBatch(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_spacetobatch_graph_float16(): SpaceToBatch(np.float16)