# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor import mindspore.nn as nn from mindspore.ops.operations import _inner_ops as inner from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self, axis=0, out_nums=1): super(Net, self).__init__() self.split = P.Split(axis, out_nums) def construct(self, x): return self.split(x) class NetDynamic(nn.Cell): def __init__(self, axis=0, out_nums=1): super(NetDynamic, self).__init__() self.conv = inner.GpuConvertToDynamicShape() self.split = P.Split(axis, out_nums) def construct(self, x): x_conv = self.conv(x) x_split = self.split(x_conv) return x_split context.set_context(mode=context.GRAPH_MODE, device_target="GPU") def split_basic(nptype): x = np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(nptype) split_op = Net(0, 3) outputs = split_op(Tensor(x)) for i, out in enumerate(outputs): assert (out.asnumpy() == x[i]).all() @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_split_basic_float16(): split_basic(np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_split_basic_float32(): split_basic(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_split_basic_float64(): split_basic(np.float64) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_split_basic_int32(): split_basic(np.int32) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_split_basic_uint32(): split_basic(np.uint32) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_split_basic_int64(): split_basic(np.int64) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_split_basic_bool(): split_basic(np.bool) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_split_4d(): x_np = np.random.randn(2, 6, 4, 4).astype(np.float32) y = np.split(x_np, 3, axis=1) split_op = Net(1, 3) outputs = split_op(Tensor(x_np)) for i, out in enumerate(outputs): assert (out.asnumpy() == y[i]).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_split_dynamic(): x = np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float32) net = NetDynamic(0, 3) x_split = net(Tensor(x)) for i, out in enumerate(x_split): assert (out.asnumpy() == x[i]).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_split_dynamic_axis1(): x = np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.int32) y = np.split(x, 2, axis=1) net = NetDynamic(1, 2) x_split = net(Tensor(x)) for i, out in enumerate(x_split): assert (out.asnumpy() == y[i]).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_split_dynamic_axis2(): x = np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.int32) y = np.split(x, 3, axis=2) net = NetDynamic(2, 3) x_split = net(Tensor(x)) for i, out in enumerate(x_split): assert (out.asnumpy() == y[i]).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_split_invalid_input(): with pytest.raises(TypeError): _ = Net(0.1, 3) with pytest.raises(TypeError): _ = Net(0, 3.0) with pytest.raises(ValueError): _ = Net(0, -3) x = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.int32) split_net = Net(2, 2) with pytest.raises(ValueError): _ = split_net(Tensor(x)) with pytest.raises(TypeError): _ = split_net(x)