# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops.operations import _grad_ops as G class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.relu_grad = G.ReluGrad() def construct(self, y_backprop, x): return self.relu_grad(y_backprop, x) def get_output(y_backprop, x, enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) net = Net() output = net(y_backprop, x) return output def test_relu_grad(shape1, shape2, dtype): x = Tensor(np.random.normal(0, 10, shape1).astype(dtype)) y_backprop = Tensor(np.random.normal(0, 10, shape2).astype(dtype)) expect = get_output(y_backprop, x, False) output = get_output(y_backprop, x, True) expect_np = expect.asnumpy().copy() output_np = output.asnumpy().copy() assert np.allclose(expect_np, output_np, 0.0001, 0.0001) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu_grad_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") test_relu_grad((4, 3), (4, 3), np.int32) test_relu_grad((12, 1), (12, 1), np.float16) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_relu_grad_ascend(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") test_relu_grad((4, 3), (4, 3), np.int32) test_relu_grad((12, 1), (12, 1), np.float16)