# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.nn import Cell import mindspore.ops.operations as P class Net(Cell): def __init__(self): super(Net, self).__init__() self.add = P.Add() self.sub = P.Sub() self.mul = P.Mul() self.div = P.RealDiv() self.sqrt = P.Sqrt() self.pow = P.Pow() self.neg = P.Neg() self.reducemin = P.ReduceMin() self.reducesum = P.ReduceSum(keep_dims=True) self.reshape = P.Reshape() def construct(self, x, y): add_res1 = self.add(x, 4) add_res2 = self.add(add_res1, 5) sub_res = self.sub(y, 3) mul_res = self.mul(self.sqrt(add_res2), self.sqrt(sub_res)) div_res = self.div(mul_res, self.sqrt(mul_res)) pow_res = self.pow(y, 2) neg_res = self.neg(self.neg(pow_res)) add_res3 = self.add(neg_res, div_res) resh_res = self.reshape(add_res3, (2, 12, 3)) neg_res = self.neg(resh_res) red_res = self.reducesum(neg_res, 0) return self.reducemin(self.reducemin(red_res, 1), 1) class EmptyNet(Cell): def __init__(self): super(EmptyNet, self).__init__() self.add = P.Add() self.neg = P.Neg() def construct(self, x, y): add_res1 = self.add(x, y) neg_res1 = self.neg(x) add_res2 = self.add(add_res1, neg_res1) return add_res2 def test_basic(): input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32) input_y = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32) input_y = np.abs(input_y) + 3 add_res = input_x + 9 sub_res = input_y + (-3) mul_res = np.sqrt(add_res * sub_res) div_res = np.sqrt(mul_res) pow_res = input_y * input_y neg_res = pow_res add_res3 = neg_res + div_res neg_res = np.negative(add_res3) red_res = np.sum(neg_res, axis=0, keepdims=True) expect = np.min(red_res, (1, 2, 3)) net = Net() result = net(Tensor(input_x), Tensor(input_y)) res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True) assert res def test_empty_graph(): input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32) input_y = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32) expect = input_y net = EmptyNet() result = net(Tensor(input_x), Tensor(input_y)) res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True) assert res @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_basic_gpu(): context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU") test_basic() test_empty_graph() @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_basic_ascend(): context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend") test_basic() test_empty_graph()