# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test cases for scalar affine""" import numpy as np import mindspore.context as context import mindspore.nn as nn import mindspore.nn.probability.bijector as msb from mindspore import Tensor from mindspore import dtype context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(nn.Cell): """ Test class: forward pass of bijector. """ def __init__(self): super(Net, self).__init__() self.bijector = msb.ScalarAffine(scale=2.0, shift=1.0) def construct(self, x_): return self.bijector.forward(x_) def test_forward(): forward = Net() x = np.array([2.0, 3.0, 4.0, 5.0]).astype(np.float32) ans = forward(Tensor(x, dtype=dtype.float32)) tol = 1e-6 expected = 2 * x + 1 assert (np.abs(ans.asnumpy() - expected) < tol).all() class Net1(nn.Cell): """ Test class: backward pass of bijector. """ def __init__(self): super(Net1, self).__init__() self.bijector = msb.ScalarAffine(shift=1.0, scale=2.0) def construct(self, x_): return self.bijector.inverse(x_) def test_backward(): backward = Net1() x = np.array([2.0, 3.0, 4.0, 5.0]).astype(np.float32) ans = backward(Tensor(x, dtype=dtype.float32)) tol = 1e-6 expected = 0.5 * (x - 1.0) assert (np.abs(ans.asnumpy() - expected) < tol).all() class Net2(nn.Cell): """ Test class: Forward Jacobian. """ def __init__(self): super(Net2, self).__init__() self.bijector = msb.ScalarAffine(shift=1.0, scale=2.0) def construct(self, x_): return self.bijector.forward_log_jacobian(x_) def test_forward_jacobian(): forward_jacobian = Net2() x = Tensor([2.0, 3.0, 4.0, 5.0], dtype=dtype.float32) ans = forward_jacobian(x) expected = np.log([2.0]) tol = 1e-6 assert (np.abs(ans.asnumpy() - expected) < tol).all() class Net3(nn.Cell): """ Test class: Backward Jacobian. """ def __init__(self): super(Net3, self).__init__() self.bijector = msb.ScalarAffine(shift=1.0, scale=2.0) def construct(self, x_): return self.bijector.inverse_log_jacobian(x_) def test_backward_jacobian(): backward_jacobian = Net3() x = Tensor([2.0, 3.0, 4.0, 5.0], dtype=dtype.float32) ans = backward_jacobian(x) expected = np.log([0.5]) tol = 1e-6 assert (np.abs(ans.asnumpy() - expected) < tol).all()