# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ The VAE interface can be called to construct VAE-GAN network. """ import os import mindspore.dataset as ds import mindspore.dataset.vision.c_transforms as CV import mindspore.nn as nn from mindspore import context import mindspore.ops as ops from mindspore.nn.probability.dpn import VAE from mindspore.nn.probability.infer import ELBO, SVI context.set_context(mode=context.GRAPH_MODE, device_target="GPU") IMAGE_SHAPE = (-1, 1, 32, 32) image_path = os.path.join('/home/workspace/mindspore_dataset/mnist', "train") class Encoder(nn.Cell): def __init__(self): super(Encoder, self).__init__() self.fc1 = nn.Dense(1024, 400) self.relu = nn.ReLU() self.flatten = nn.Flatten() def construct(self, x): x = self.flatten(x) x = self.fc1(x) x = self.relu(x) return x class Decoder(nn.Cell): def __init__(self): super(Decoder, self).__init__() self.fc1 = nn.Dense(400, 1024) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() self.reshape = ops.Reshape() def construct(self, z): z = self.fc1(z) z = self.reshape(z, IMAGE_SHAPE) z = self.sigmoid(z) return z class Discriminator(nn.Cell): """ The Discriminator of the GAN network. """ def __init__(self): super(Discriminator, self).__init__() self.fc1 = nn.Dense(1024, 400) self.fc2 = nn.Dense(400, 720) self.fc3 = nn.Dense(720, 1024) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() self.flatten = nn.Flatten() def construct(self, x): x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) x = self.sigmoid(x) return x class VaeGan(nn.Cell): def __init__(self): super(VaeGan, self).__init__() self.E = Encoder() self.G = Decoder() self.D = Discriminator() self.dense = nn.Dense(20, 400) self.vae = VAE(self.E, self.G, 400, 20) self.shape = ops.Shape() self.normal = ops.normal self.to_tensor = ops.ScalarToArray() def construct(self, x): recon_x, x, mu, std = self.vae(x) z_p = self.normal(self.shape(mu), self.to_tensor(0.0), self.to_tensor(1.0), seed=0) z_p = self.dense(z_p) x_p = self.G(z_p) ld_real = self.D(x) ld_fake = self.D(recon_x) ld_p = self.D(x_p) return ld_real, ld_fake, ld_p, recon_x, x, mu, std class VaeGanLoss(ELBO): def __init__(self): super(VaeGanLoss, self).__init__() self.zeros = ops.ZerosLike() self.mse = nn.MSELoss(reduction='sum') def construct(self, data, label): ld_real, ld_fake, ld_p, recon_x, x, mu, std = data y_real = self.zeros(ld_real) + 1 y_fake = self.zeros(ld_fake) loss_D = self.mse(ld_real, y_real) loss_GD = self.mse(ld_p, y_fake) loss_G = self.mse(ld_fake, y_real) reconstruct_loss = self.recon_loss(x, recon_x) kl_loss = self.posterior('kl_loss', 'Normal', self.zeros(mu), self.zeros(mu) + 1, mu, std) elbo_loss = reconstruct_loss + self.sum(kl_loss) return loss_D + loss_G + loss_GD + elbo_loss def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1): """ create dataset for train or test """ # define dataset mnist_ds = ds.MnistDataset(data_path) resize_height, resize_width = 32, 32 rescale = 1.0 / 255.0 shift = 0.0 # define map operations resize_op = CV.Resize((resize_height, resize_width)) # Bilinear mode rescale_op = CV.Rescale(rescale, shift) hwc2chw_op = CV.HWC2CHW() # apply map operations on images mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # apply DatasetOps mnist_ds = mnist_ds.batch(batch_size) mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds def test_vae_gan(): vae_gan = VaeGan() net_loss = VaeGanLoss() optimizer = nn.Adam(params=vae_gan.trainable_params(), learning_rate=0.001) ds_train = create_dataset(image_path, 128, 1) net_with_loss = nn.WithLossCell(vae_gan, net_loss) vi = SVI(net_with_loss=net_with_loss, optimizer=optimizer) vae_gan = vi.run(train_dataset=ds_train, epochs=5)