# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ resnet50 example """ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor, Model from mindspore.context import ParallelMode from mindspore.nn.optim import Momentum from mindspore.ops.operations import Add from ....dataset_mock import MindData def conv3x3(in_channels, out_channels, stride=1, padding=1, pad_mode='pad'): """3x3 convolution """ return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=padding, pad_mode=pad_mode) def conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='pad'): """1x1 convolution""" return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=padding, pad_mode=pad_mode) class ResidualBlock(nn.Cell): """ residual Block """ expansion = 4 def __init__(self, in_channels, out_channels, stride=1, down_sample=False): super(ResidualBlock, self).__init__() out_chls = out_channels // self.expansion self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(out_chls) self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=1) self.bn2 = nn.BatchNorm2d(out_chls) self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0) self.bn3 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() self.downsample = down_sample self.conv_down_sample = conv1x1(in_channels, out_channels, stride=stride, padding=0) self.bn_down_sample = nn.BatchNorm2d(out_channels) self.add = Add() def construct(self, x): """ :param x: :return: """ identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample: identity = self.conv_down_sample(identity) identity = self.bn_down_sample(identity) out = self.add(out, identity) out = self.relu(out) return out class ResNet18(nn.Cell): """ resnet nn.Cell """ def __init__(self, block, num_classes=100): super(ResNet18, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad') self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same') self.layer1 = self.MakeLayer( block, 2, in_channels=64, out_channels=256, stride=1) self.layer2 = self.MakeLayer( block, 2, in_channels=256, out_channels=512, stride=2) self.layer3 = self.MakeLayer( block, 2, in_channels=512, out_channels=1024, stride=2) self.layer4 = self.MakeLayer( block, 2, in_channels=1024, out_channels=2048, stride=2) self.avgpool = nn.AvgPool2d(7, 1) self.flatten = nn.Flatten() self.fc = nn.Dense(512 * block.expansion, num_classes) def MakeLayer(self, block, layer_num, in_channels, out_channels, stride): """ make block layer :param block: :param layer_num: :param in_channels: :param out_channels: :param stride: :return: """ layers = [] resblk = block(in_channels, out_channels, stride=stride, down_sample=True) layers.append(resblk) for _ in range(1, layer_num): resblk = block(out_channels, out_channels, stride=1) layers.append(resblk) return nn.SequentialCell(layers) def construct(self, x): """ :param x: :return: """ x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = self.flatten(x) x = self.fc(x) return x class ResNet9(nn.Cell): """ resnet nn.Cell """ def __init__(self, block, num_classes=100): super(ResNet9, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad') self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same') self.layer1 = self.MakeLayer( block, 1, in_channels=64, out_channels=256, stride=1) self.layer2 = self.MakeLayer( block, 1, in_channels=256, out_channels=512, stride=2) self.layer3 = self.MakeLayer( block, 1, in_channels=512, out_channels=1024, stride=2) self.layer4 = self.MakeLayer( block, 1, in_channels=1024, out_channels=2048, stride=2) self.avgpool = nn.AvgPool2d(7, 1) self.flatten = nn.Flatten() self.fc = nn.Dense(512 * block.expansion, num_classes) def MakeLayer(self, block, layer_num, in_channels, out_channels, stride): """ make block layer :param block: :param layer_num: :param in_channels: :param out_channels: :param stride: :return: """ layers = [] resblk = block(in_channels, out_channels, stride=stride, down_sample=True) layers.append(resblk) for _ in range(1, layer_num): resblk = block(out_channels, out_channels, stride=1) layers.append(resblk) return nn.SequentialCell(layers) def construct(self, x): """ :param x: :return: """ x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = self.flatten(x) x = self.fc(x) return x def resnet9(classnum): return ResNet9(ResidualBlock, classnum) class DatasetLenet(MindData): """DatasetLenet definition""" def __init__(self, predict, label, length=3, size=None, batch_size=None, np_types=None, output_shapes=None, input_indexs=()): super(DatasetLenet, self).__init__(size=size, batch_size=batch_size, np_types=np_types, output_shapes=output_shapes, input_indexs=input_indexs) self.predict = predict self.label = label self.index = 0 self.length = length def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 return self.predict, self.label def reset(self): self.index = 0 def test_resnet_train_tensor(): """test_resnet_train_tensor""" batch_size = 1 size = 2 context.set_context(mode=context.GRAPH_MODE) context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, device_num=size, parameter_broadcast=True) one_hot_len = 10 dataset_types = (np.float32, np.float32) dataset_shapes = [[batch_size, 3, 224, 224], [batch_size, one_hot_len]] predict = Tensor(np.ones([batch_size, 3, 224, 224]).astype(np.float32) * 0.01) label = Tensor(np.zeros([batch_size, one_hot_len]).astype(np.float32)) dataset = DatasetLenet(predict, label, 2, size=2, batch_size=2, np_types=dataset_types, output_shapes=dataset_shapes, input_indexs=(0, 1)) dataset.reset() network = resnet9(one_hot_len) network.set_train() loss_fn = nn.SoftmaxCrossEntropyWithLogits() optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), learning_rate=0.1, momentum=0.9) model = Model(network=network, loss_fn=loss_fn, optimizer=optimizer) model.train(epoch=2, train_dataset=dataset, dataset_sink_mode=False) context.set_context(mode=context.GRAPH_MODE) context.reset_auto_parallel_context() class_num = 10 def get_dataset(): dataset_types = (np.float32, np.float32) dataset_shapes = ((32, 3, 224, 224), (32, class_num)) dataset = MindData(size=2, batch_size=1, np_types=dataset_types, output_shapes=dataset_shapes, input_indexs=(0, 1)) return dataset