# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing Resize op in DE """ import pytest import mindspore.dataset as ds import mindspore.dataset.vision.c_transforms as vision import mindspore.dataset.vision.py_transforms as py_vision from mindspore.dataset.vision.utils import Inter from mindspore import log as logger from util import visualize_list, save_and_check_md5, \ config_get_set_seed, config_get_set_num_parallel_workers DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" GENERATE_GOLDEN = False def test_resize_op(plot=False): def test_resize_op_parameters(test_name, size, plot): """ Test resize_op """ logger.info("Test resize: {0}".format(test_name)) data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # define map operations decode_op = vision.Decode() resize_op = vision.Resize(size) # apply map operations on images data1 = data1.map(operations=decode_op, input_columns=["image"]) data2 = data1.map(operations=resize_op, input_columns=["image"]) image_original = [] image_resized = [] for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), data2.create_dict_iterator(num_epochs=1, output_numpy=True)): image_1 = item1["image"] image_2 = item2["image"] image_original.append(image_1) image_resized.append(image_2) if plot: visualize_list(image_original, image_resized) test_resize_op_parameters("Test single int for size", 10, plot=False) test_resize_op_parameters("Test tuple for size", (10, 15), plot=False) def test_resize_op_ANTIALIAS(): """ Test resize_op """ logger.info("Test resize for ANTIALIAS") data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # define map operations decode_op = py_vision.Decode() resize_op = py_vision.Resize(20, Inter.ANTIALIAS) # apply map operations on images data1 = data1.map(operations=[decode_op, resize_op, py_vision.ToTensor()], input_columns=["image"]) num_iter = 0 for _ in data1.create_dict_iterator(num_epochs=1, output_numpy=True): num_iter += 1 logger.info("use Resize by Inter.ANTIALIAS process {} images.".format(num_iter)) def test_resize_md5(plot=False): def test_resize_md5_parameters(test_name, size, filename, seed, plot): """ Test Resize with md5 check """ logger.info("Test Resize with md5 check: {0}".format(test_name)) original_seed = config_get_set_seed(seed) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = vision.Decode() resize_op = vision.Resize(size) data1 = data1.map(operations=decode_op, input_columns=["image"]) data2 = data1.map(operations=resize_op, input_columns=["image"]) image_original = [] image_resized = [] # Compare with expected md5 from images save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN) for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), data2.create_dict_iterator(num_epochs=1, output_numpy=True)): image_1 = item1["image"] image_2 = item2["image"] image_original.append(image_1) image_resized.append(image_2) if plot: visualize_list(image_original, image_resized) # Restore configuration ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) test_resize_md5_parameters("Test single int for size", 5, "resize_01_result.npz", 5, plot) test_resize_md5_parameters("Test tuple for size", (5, 7), "resize_02_result.npz", 7, plot) def test_resize_op_invalid_input(): def test_invalid_input(test_name, size, interpolation, error, error_msg): logger.info("Test Resize with bad input: {0}".format(test_name)) with pytest.raises(error) as error_info: vision.Resize(size, interpolation) assert error_msg in str(error_info.value) test_invalid_input("invalid size parameter type as a single number", 4.5, Inter.LINEAR, TypeError, "Size should be a single integer or a list/tuple (h, w) of length 2.") test_invalid_input("invalid size parameter shape", (2, 3, 4), Inter.LINEAR, TypeError, "Size should be a single integer or a list/tuple (h, w) of length 2.") test_invalid_input("invalid size parameter type in a tuple", (2.3, 3), Inter.LINEAR, TypeError, "Argument size at dim 0 with value 2.3 is not of type []") test_invalid_input("invalid Interpolation value", (2.3, 3), None, KeyError, "None") if __name__ == "__main__": test_resize_op(plot=True) test_resize_op_ANTIALIAS() test_resize_md5(plot=True) test_resize_op_invalid_input()