# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing TimeMasking op in DE. """ import numpy as np import pytest import mindspore.dataset as ds import mindspore.dataset.audio.transforms as audio from mindspore import log as logger CHANNEL = 2 FREQ = 20 TIME = 30 def gen(shape): np.random.seed(0) data = np.random.random(shape) yield (np.array(data, dtype=np.float32),) def count_unequal_element(data_expected, data_me, rtol, atol): """ Precision calculation func """ assert data_expected.shape == data_me.shape total_count = len(data_expected.flatten()) error = np.abs(data_expected - data_me) greater = np.greater(error, atol + np.abs(data_expected) * rtol) loss_count = np.count_nonzero(greater) assert (loss_count / total_count) < rtol, "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}".format( data_expected[greater], data_me[greater], error[greater]) def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True): """ Precision calculation formula """ if np.any(np.isnan(data_expected)): assert np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan) elif not np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan): count_unequal_element(data_expected, data_me, rtol, atol) def test_func_time_masking_eager_random_input(): """ mindspore eager mode normal testcase:time_masking op""" logger.info("test time_masking op") spectrogram = next(gen((CHANNEL, FREQ, TIME)))[0] out_put = audio.TimeMasking(False, 3, 1, 10)(spectrogram) assert out_put.shape == (CHANNEL, FREQ, TIME) def test_func_time_masking_eager_precision(): """ mindspore eager mode normal testcase:time_masking op""" logger.info("test time_masking op") spectrogram = np.array([[[0.17274511, 0.85174704, 0.07162686, -0.45436913], [-1.045921, -1.8204843, 0.62333095, -0.09532598], [1.8175547, -0.25779432, -0.58152324, -0.00221091]], [[-1.205032, 0.18922766, -0.5277673, -1.3090396], [1.8914849, -0.97001046, -0.23726775, 0.00525892], [-1.0271876, 0.33526883, 1.7413973, 0.12313101]]]).astype(np.float32) out_ms = audio.TimeMasking(False, 2, 0, 0)(spectrogram) out_benchmark = np.array([[[0., 0., 0.07162686, -0.45436913], [0., 0., 0.62333095, -0.09532598], [0., 0., -0.58152324, -0.00221091]], [[0., 0., -0.5277673, -1.3090396], [0., 0., -0.23726775, 0.00525892], [0., 0., 1.7413973, 0.12313101]]]).astype(np.float32) allclose_nparray(out_ms, out_benchmark, 0.0001, 0.0001) def test_func_time_masking_pipeline(): """ mindspore pipeline mode normal testcase:time_masking op""" logger.info("test time_masking op, pipeline") generator = gen([CHANNEL, FREQ, TIME]) data1 = ds.GeneratorDataset(source=generator, column_names=["multi_dimensional_data"]) transforms = [audio.TimeMasking(True, 8)] data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"]) for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): out_put = item["multi_dimensional_data"] assert out_put.shape == (CHANNEL, FREQ, TIME) def test_time_masking_invalid_input(): def test_invalid_param(test_name, iid_masks, time_mask_param, mask_start, error, error_msg): logger.info("Test TimeMasking with wrong params: {0}".format(test_name)) with pytest.raises(error) as error_info: audio.TimeMasking(iid_masks, time_mask_param, mask_start) assert error_msg in str(error_info.value) def test_invalid_input(test_name, iid_masks, time_mask_param, mask_start, error, error_msg): logger.info("Test TimeMasking with wrong params: {0}".format(test_name)) with pytest.raises(error) as error_info: spectrogram = next(gen((CHANNEL, FREQ, TIME)))[0] _ = audio.TimeMasking(iid_masks, time_mask_param, mask_start)(spectrogram) assert error_msg in str(error_info.value) test_invalid_param("invalid mask_start", True, 2, -10, ValueError, "Input mask_start is not within the required interval of [0, 16777216].") test_invalid_param("invalid mask_param", True, -2, 10, ValueError, "Input mask_param is not within the required interval of [0, 16777216].") test_invalid_param("invalid iid_masks", "True", 2, 10, TypeError, "Argument iid_masks with value True is not of type [], but got .") test_invalid_input("invalid mask_start", False, 2, 100, RuntimeError, "MaskAlongAxis: mask_start should be less than the length of chosen dimension.") test_invalid_input("invalid mask_width", False, 200, 2, RuntimeError, "TimeMasking: time_mask_param should be less than or equal to the length of time dimension.") if __name__ == "__main__": test_func_time_masking_eager_random_input() test_func_time_masking_eager_precision() test_func_time_masking_pipeline() test_time_masking_invalid_input()