# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing TimeStretch op in DE """ import numpy as np import pytest import mindspore.dataset as ds import mindspore.dataset.audio.transforms as c_audio from mindspore import log as logger CHANNEL_NUM = 2 FREQ = 1025 FRAME_NUM = 300 COMPLEX = 2 def gen(shape): np.random.seed(0) data = np.random.random(shape) yield (np.array(data, dtype=np.float32),) def count_unequal_element(data_expected, data_me, rtol, atol): assert data_expected.shape == data_me.shape total_count = len(data_expected.flatten()) error = np.abs(data_expected - data_me) greater = np.greater(error, atol + np.abs(data_expected) * rtol) loss_count = np.count_nonzero(greater) assert (loss_count / total_count) < rtol, "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}".format( data_expected[greater], data_me[greater], error[greater]) def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True): if np.any(np.isnan(data_expected)): assert np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan) elif not np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan): count_unequal_element(data_expected, data_me, rtol, atol) def test_time_stretch_pipeline(): """ Test TimeStretch op. Pipeline. """ logger.info("test TimeStretch op") generator = gen([CHANNEL_NUM, FREQ, FRAME_NUM, COMPLEX]) data1 = ds.GeneratorDataset(source=generator, column_names=["multi_dimensional_data"]) transforms = [c_audio.TimeStretch(512, FREQ, 1.3)] data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"]) for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): out_put = item["multi_dimensional_data"] assert out_put.shape == (CHANNEL_NUM, FREQ, np.ceil(FRAME_NUM / 1.3), COMPLEX) def test_time_stretch_pipeline_invalid_param(): """ Test TimeStretch op. Set invalid param. Pipeline. """ logger.info("test TimeStretch op with invalid values") generator = gen([CHANNEL_NUM, FREQ, FRAME_NUM, COMPLEX]) data1 = ds.GeneratorDataset(source=generator, column_names=["multi_dimensional_data"]) with pytest.raises(ValueError, match=r"Input fixed_rate is not within the required interval of \(0, 16777216\]."): transforms = [c_audio.TimeStretch(512, FREQ, -1.3)] data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"]) for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): out_put = item["multi_dimensional_data"] assert out_put.shape == (CHANNEL_NUM, FREQ, np.ceil(FRAME_NUM / 1.3), COMPLEX) def test_time_stretch_eager(): """ Test TimeStretch op. Set param. Eager. """ logger.info("test TimeStretch op with customized parameter values") spectrogram = next(gen([CHANNEL_NUM, FREQ, FRAME_NUM, COMPLEX]))[0] out_put = c_audio.TimeStretch(512, FREQ, 1.3)(spectrogram) assert out_put.shape == (CHANNEL_NUM, FREQ, np.ceil(FRAME_NUM / 1.3), COMPLEX) def test_percision_time_stretch_eager(): """ Test TimeStretch op. Compare precision. Eager. """ logger.info("test TimeStretch op with default values") spectrogram = np.array([[[[1.0402449369430542, 0.3807601034641266], [-1.120057225227356, -0.12819576263427734], [1.4303032159805298, -0.08839055150747299]], [[1.4198592901229858, 0.6900091767311096], [-1.8593409061431885, 0.16363371908664703], [-2.3349387645721436, -1.4366451501846313]]], [[[-0.7083967328071594, 0.9325454831123352], [-1.9133838415145874, 0.011225821450352669], [1.477278232574463, -1.0551637411117554]], [[-0.6668586134910583, -0.23143270611763], [-2.4390718936920166, 0.17638640105724335], [-0.4795735776424408, 0.1345423310995102]]]]).astype(np.float64) out_expect = np.array([[[[1.0402449369430542, 0.3807601034641266], [-1.302264928817749, -0.1490504890680313]], [[1.4198592901229858, 0.6900091767311096], [-2.382312774658203, 0.2096325159072876]]], [[[-0.7083966732025146, 0.9325454831123352], [-1.8545820713043213, 0.010880803689360619]], [[-0.6668586134910583, -0.23143276572227478], [-1.2737033367156982, 0.09211209416389465]]]]).astype(np.float64) out_ms = c_audio.TimeStretch(64, 2, 1.6)(spectrogram) allclose_nparray(out_ms, out_expect, 0.001, 0.001) if __name__ == '__main__': test_time_stretch_pipeline() test_time_stretch_pipeline_invalid_param() test_time_stretch_eager() test_percision_time_stretch_eager()