# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test Dense """ import numpy as np import mindspore.nn as nn from mindspore import Tensor from ..ut_filter import non_graph_engine class Net(nn.Cell): """Net definition""" def __init__(self, input_channels, output_channels, weight='normal', bias='zeros', has_bias=True): super(Net, self).__init__() self.fc = nn.Dense(input_channels, output_channels, weight, bias, has_bias) def construct(self, input_x): return self.fc(input_x) @non_graph_engine def test_compile(): weight = Tensor(np.ones([12, 8], np.float32)) bias = Tensor(np.ones([12], np.float32)) net = Net(8, 12, weight=weight, bias=bias) input_data = Tensor(np.ones([1, 8], np.float32)) # since simulator currently not support matMul output = net(input_data) print(output.asnumpy()) @non_graph_engine def test_compile_nobias(): weight = Tensor(np.ones([12, 8], np.float32)) net = Net(8, 12, weight=weight, has_bias=False) input_data = Tensor(np.ones([1, 8], np.float32)) # since simulator currently not support matMu # enable it when staging function is ready output = net(input_data) print(output.asnumpy())