# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ @File : test_row_tensor.py @Author: @Date : 2020-06-08 @Desc : test mindspore row_tensor's operation """ import numpy as np import pytest import mindspore as ms import mindspore.nn as nn from mindspore.ops import composite as C from mindspore.ops import functional as F from mindspore.ops import operations as P from mindspore.ops.composite.multitype_ops.zeros_like_impl import zeros_like from mindspore.ops.primitive import constexpr, PrimitiveWithInfer, prim_attr_register from mindspore.ops._grad.grad_base import bprop_getters from mindspore.ops._utils.utils import generate_shape_index from mindspore import Tensor, RowTensor, context from mindspore.common.parameter import Parameter, ParameterTuple from mindspore.common import dtype as mstype from mindspore._checkparam import Validator as validator from mindspore._checkparam import Rel from mindspore.nn import Optimizer from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import Momentum from mindspore.train import Model from ....dataset_mock import MindData @pytest.fixture(scope="module", autouse=True) def setup_teardown(): context.set_context(mode=context.GRAPH_MODE, enable_sparse=True) yield context.set_context(enable_sparse=False) reduce_sum = P.ReduceSum() unsorted_segment_sum = P.UnsortedSegmentSum() transpose = P.Transpose() shape_op = P.Shape() reshape = P.Reshape() size_op = P.Size() invert_permutation = P.InvertPermutation() logical_and = P.LogicalAnd() def get_axis(x): shape = shape_op(x) length = F.tuple_len(shape) perm = F.make_range(0, length) return perm class MSELoss(nn.Cell): def __init__(self): super(MSELoss, self).__init__() self.reduce_sum = P.ReduceSum() self.square = P.Square() self.reduce_mean = P.ReduceMean() def construct(self, data, label): diff = data - label return self.reduce_mean(self.square(diff), get_axis(diff)) class MindDataSet(MindData): def __init__(self, dataset_types, dataset_shapes): super(MindDataSet, self).__init__(size=2, batch_size=32, np_types=dataset_types, output_shapes=dataset_shapes, input_indexs=(0, 1)) def __next__(self): if self._size < self._iter_num: raise StopIteration self._iter_num += 1 lst = [] for shape_, type_ in zip(self._output_shapes, self._np_types): lst.append(Tensor(np.ones(shape_).astype(type_))) return tuple(lst) @constexpr def _generate_inverse_index(x_shape, axis): x_rank = len(x_shape) index = tuple(range(x_rank)) if axis < 0: axis += x_rank perm = index[1:1 + axis] + (0,) + index[1 + axis:] return perm # pylint: disable=W0231 class MySparseGatherV2(PrimitiveWithInfer): """ For test """ @prim_attr_register def __init__(self): """init index_select""" self.init_prim_io_names(inputs=['params', 'indices', 'axis'], outputs=['output']) def __infer__(self, params, indices, axis): validator.check_subclass("params", params['dtype'], mstype.tensor, self.name) validator.check_tensor_dtype_valid("indices", indices['dtype'], mstype.int_type, self.name) validator.check_subclass("axis", axis['dtype'], mstype.int_, self.name) axis_v = axis['value'] params_shp = params['shape'] rank = len(params_shp) validator.check_int_range(axis_v, -rank, rank, Rel.INC_LEFT, "axis", self.name) if axis_v < 0: axis_v += rank out_shape = params_shp[:axis_v] + indices['shape'] + params_shp[axis_v + 1:] out = {'shape': out_shape, 'dtype': params['dtype'], 'value': None} return out @bprop_getters.register(MySparseGatherV2) def get_bprop_sparse_gather_v2(self): """Generate bprop for MySparseGatherV2""" def bprop(x, indices, axis, out, dout): x_shp = shape_op(x) if axis == 0: indices_size = (size_op(indices),) x_tail_shp = x_shp[1:] values_shape = indices_size + x_tail_shp values = reshape(dout, values_shape) indices = reshape(indices, indices_size) return RowTensor(indices, values, x_shp), zeros_like(indices), zeros_like(axis) if F.rank(dout) == 0: dout = P.ExpandDims()(dout, -1) if F.rank(indices) == 0: indices = P.ExpandDims()(indices, -1) out_shp = shape_op(dout) ind_shp = shape_op(indices) # Example: out_shape:(3,2,3) axis 1 -> (1,0,2) perm_1 = generate_shape_index(out_shp, ind_shp, axis) values_transpose = transpose(dout, perm_1) params_grad = unsorted_segment_sum(values_transpose, indices, shape_op(x)[axis]) # Example: out_shape:(3,2,3) axis 2 -> (1,2,0) perm_2 = _generate_inverse_index(x_shp, axis) params_grad = transpose(params_grad, perm_2) return params_grad, zeros_like(indices), zeros_like(axis) return bprop adam_opt_for_map = C.MultitypeFuncGraph("adam_opt_for_map") @adam_opt_for_map.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "RowTensor", "Bool") def _update_run_op_for_map_row_tensor(beta1, beta2, eps, lr, weight_decay_tensor, param, m, v, gradient, decay_flag): return gradient.values @adam_opt_for_map.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Bool") def _update_run_op_for_map_tensor(beta1, beta2, eps, lr, weight_decay_tensor, param, m, v, gradient, decay_flag): op_mul = P.Mul() op_square = P.Square() op_sqrt = P.Sqrt() op_cast = P.Cast() op_reshape = P.Reshape() op_shape = P.Shape() param_fp32 = op_cast(param, mstype.float32) m_fp32 = op_cast(m, mstype.float32) v_fp32 = op_cast(v, mstype.float32) gradient_fp32 = op_cast(gradient, mstype.float32) next_m = op_mul(beta1, m_fp32) + op_mul(op_cast(F.tuple_to_array((1.0,)), mstype.float32) - beta1, gradient_fp32) next_v = op_mul(beta2, v_fp32) + op_mul(op_cast(F.tuple_to_array((1.0,)), mstype.float32) - beta2, op_square(gradient_fp32)) update = next_m / (op_sqrt(next_v) + eps) if decay_flag: update = update + op_mul(weight_decay_tensor, param_fp32) update_with_lr = op_mul(lr, update) next_param = param_fp32 - op_reshape(update_with_lr, op_shape(param_fp32)) next_v = F.depend(next_v, F.assign(param, next_param)) next_v = F.depend(next_v, F.assign(m, next_m)) next_v = F.depend(next_v, F.assign(v, next_v)) return next_v def _check_param_value(beta1, beta2, eps, weight_decay, prim_name): """Check the type of inputs.""" validator.check_value_type("beta1", beta1, [float], prim_name) validator.check_value_type("beta2", beta2, [float], prim_name) validator.check_value_type("eps", eps, [float], prim_name) validator.check_value_type("weight_dacay", weight_decay, [float], prim_name) validator.check_float_range(beta1, 0.0, 1.0, Rel.INC_NEITHER, "beta1", prim_name) validator.check_float_range(beta2, 0.0, 1.0, Rel.INC_NEITHER, "beta2", prim_name) validator.check_positive_float(eps, "eps", prim_name) validator.check_non_negative_float(weight_decay, "weight_decay", prim_name) class AdamWeightDecaySparse(Optimizer): def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0, decay_filter=lambda x: 'beta' not in x.name and 'gamma' not in x.name): super(AdamWeightDecaySparse, self).__init__(learning_rate, params) if self.is_group: raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.") _check_param_value(beta1, beta2, eps, weight_decay, self.cls_name) self.beta1 = Tensor(np.array([beta1]).astype(np.float32)) self.beta2 = Tensor(np.array([beta2]).astype(np.float32)) self.eps = Tensor(np.array([eps]).astype(np.float32)) self.weight_decay_tensor = Tensor(np.array([weight_decay]).astype(np.float32)) self.params = self.parameters self.moments1 = self.params.clone(prefix="adam_m", init='zeros') self.moments2 = self.params.clone(prefix="adam_v", init='zeros') self.decay_flag = tuple(decay_filter(x) for x in self.params) self.map = C.Map() def construct(self, gradients): lr = self.get_lr() updated_velocity = self.map(F.partial(adam_opt_for_map, self.beta1, self.beta2, self.eps, lr, self.weight_decay_tensor), self.params, self.moments1, self.moments2, gradients, self.decay_flag) return updated_velocity def test_row_tensor_make_row_tensor(): class MakeRowTensor(nn.Cell): def __init__(self): super(MakeRowTensor, self).__init__() self.dense_shape = (3, 2) def construct(self, indices, values): ret = (RowTensor(indices, values, self.dense_shape),) return ret[0] indices = Tensor([1, 2]) values = Tensor([[0, 0], [1, 2]], dtype=ms.float32) MakeRowTensor()(indices, values) class RowTensorGetAttr(nn.Cell): def __init__(self, dense_shape): super(RowTensorGetAttr, self).__init__() self.dense_shape = dense_shape def construct(self, indices, values): x = RowTensor(indices, values, self.dense_shape) return x.values, x.indices, x.dense_shape def test_row_tensor_attr(): indices = Tensor([0]) values = Tensor([[1, 2]], dtype=ms.float32) RowTensorGetAttr((3, 2))(indices, values) def test_row_tensor_sparse_gatherv2_grad_all(): grad_all = C.GradOperation(get_all=True) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y): grad = grad_all(self.network)(x, y) return grad[0].indices, grad[0].values, grad[0].dense_shape class SparseGatherV2(nn.Cell): def __init__(self): super(SparseGatherV2, self).__init__() self.sparse_gatherv2 = MySparseGatherV2() self.axis = 0 def construct(self, params, indices): return self.sparse_gatherv2(params, indices, self.axis) params = Tensor(np.ones([3, 1, 2]).astype(np.int32)) indices = Tensor(np.array([0, 1]).astype(np.int32)) GradWrap(SparseGatherV2())(params, indices) def test_row_tensor_sparse_gatherv2_grad_with_pram(): grad_by_list = C.GradOperation(get_by_list=True) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters())) def construct(self, x): weights = self.weights grad = grad_by_list(self.network, weights)(x) x = grad[0] return x.values, x.indices, x.dense_shape class SparseGatherV2(nn.Cell): def __init__(self): super(SparseGatherV2, self).__init__() self.sparse_gatherv2 = MySparseGatherV2() self.axis = 0 self.params = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.int32)), name="params") def construct(self, indices): return self.sparse_gatherv2(self.params, indices, self.axis) indices = Tensor(np.array([0, 1]).astype(np.int32)) network = GradWrap(SparseGatherV2()) network(indices) def test_row_tensor_env_get(): class Loss(nn.Cell): def __init__(self): super(Loss, self).__init__() def construct(self, base, target): return base class NetWithSparseGatherV2(nn.Cell): def __init__(self): super(NetWithSparseGatherV2, self).__init__() self.w1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="w1") self.w2 = Parameter(Tensor(np.ones([2, 1, 2]).astype(np.float32)), name="w2") self.gatherv2 = MySparseGatherV2() self.axis = 0 def construct(self, indices): return self.gatherv2(self.w1, indices, self.axis) * self.w2 inputs = Tensor(np.array([0, 1]).astype(np.int32)) label = Tensor(np.zeros([2, 1, 2]).astype(np.float32)) net = NetWithSparseGatherV2() net.set_train() loss = Loss() optimizer = AdamWeightDecaySparse(net.trainable_params()) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) train_network(inputs, label) def test_row_tensor_model_train(): class Net(nn.Cell): def __init__(self, in_features, out_features): super(Net, self).__init__() self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight") self.add = P.Add() self.cast = P.Cast() self.flag = True def construct(self, inputs, label): x = self.add(inputs, self.weight) if self.flag: x = self.cast(x, mstype.float32) return x dataset_types = (np.float32, np.float32) dataset_shapes = ((16, 16), (16, 16)) dataset = MindDataSet(dataset_types, dataset_shapes) net = Net(16, 16) net.set_train() optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) model = Model(net, optimizer=optimizer) model.train(2, dataset, dataset_sink_mode=False) def test_row_tensor_values_dim_greater_than_dense_shape_dim(): indices = Tensor(np.array([0, 1], dtype=np.int32)) values = Tensor(np.random.randn(2, 4, 5).astype(np.float32)) dense_shape = (3, 4) with pytest.raises(TypeError): RowTensorGetAttr(dense_shape)(indices, values) def test_row_tensor_values_dim_less_than_dense_shape_dim(): indices = Tensor(np.array([0, 1], dtype=np.int32)) values = Tensor(np.random.randn(2, 4).astype(np.float32)) dense_shape = (3, 4, 5) with pytest.raises(TypeError): RowTensorGetAttr(dense_shape)(indices, values) def test_row_tensor_value_and_dense_shape_illegal(): indices = Tensor(np.array([0, 1], dtype=np.int32)) values = Tensor(np.random.randn(2, 4).astype(np.float32)) dense_shape = (3, 5) with pytest.raises(TypeError): RowTensorGetAttr(dense_shape)(indices, values) class RowTensorValuesDouble(nn.Cell): def __init__(self): super().__init__() def construct(self, x): indices = x.indices values = x.values * 2 dense_shape = x.dense_shape return RowTensor(indices, values, dense_shape) class RowTensorValuesAdd2(nn.Cell): def __init__(self): super().__init__() def construct(self, x): indices = x.indices values = x.values + 2 dense_shape = x.dense_shape return RowTensor(indices, values, dense_shape) class RowTensorWithControlIf(nn.Cell): def __init__(self, dense_shape): super().__init__() self.op1 = RowTensorValuesDouble() self.op2 = RowTensorValuesAdd2() self.dense_shape = dense_shape def construct(self, a, b, indices, values): x = RowTensor(indices, values, self.dense_shape) if a > b: x = self.op1(x) else: x = self.op2(x) return x.indices, x.values def test_row_tensor_with_control_flow_if(): a = Tensor(np.array(0).astype(np.int32)) b = Tensor(np.array(2).astype(np.int32)) indices = Tensor(np.array([0, 2]).astype(np.int32)) values = Tensor(np.ones([2, 2]).astype(np.float32)) dense_shape = (5, 2) net = RowTensorWithControlIf(dense_shape) net(a, b, indices, values) class EmbeddingLookUpBnNet(nn.Cell): def __init__(self, vocab_size, embedding_size, target='CPU'): super().__init__() self.embedding_lookup = nn.EmbeddingLookup(vocab_size, embedding_size, param_init='ones', target=target) self.bn = nn.BatchNorm2d(num_features=3) self.mul = P.Mul() self.reshape = P.Reshape() self.relu = nn.PReLU() def construct(self, indices): x = self.embedding_lookup(indices) x = self.reshape(x, (2, 3, 2, 2)) x = self.relu(x) x = self.bn(x) return x def test_embedding_lookup_with_mix_precision(): data = Tensor(np.array([0, 1, 2]).astype(np.int32)) label = Tensor(np.random.randn(*(2, 3, 2, 2)).astype(np.float32)) net = EmbeddingLookUpBnNet(8, 8, target='CPU') criterion = nn.SoftmaxCrossEntropyWithLogits(reduction='mean') optimizer = nn.Adam(params=net.trainable_params(), learning_rate=0.1) optimizer.target = 'CPU' train_network = ms.amp.build_train_network(net, optimizer, criterion, level="O2") train_network.set_train() for _ in range(2): train_network(data, label)