# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test jvp in graph mode""" import numpy as np import pytest import mindspore.nn as nn import mindspore.context as context from mindspore import Tensor from mindspore.nn.grad import Jvp context.set_context(mode=context.GRAPH_MODE) class SingleInputSingleOutputNet(nn.Cell): def construct(self, x): return x**3 class SingleInputMultipleOutputNet(nn.Cell): def construct(self, x): return x**3, 2*x class MultipleInputSingleOutputNet(nn.Cell): def construct(self, x, y): return 2*x + 3*y class MultipleInputMultipleOutputNet(nn.Cell): def construct(self, x, y): return 2*x, y**3 def test_jvp_single_input_single_output_default_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) net = SingleInputSingleOutputNet() Jvp(net)(x, v) def test_jvp_single_input_single_output_custom_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) net = SingleInputSingleOutputNet() Jvp(net)(x, v) def test_jvp_single_input_multiple_outputs_default_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) net = SingleInputMultipleOutputNet() Jvp(net)(x, v) def test_jvp_single_input_multiple_outputs_custom_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) net = SingleInputMultipleOutputNet() Jvp(net)(x, v) def test_jvp_multiple_inputs_single_output_default_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) net = MultipleInputSingleOutputNet() Jvp(net)(x, y, (v, v)) def test_jvp_multiple_inputs_single_output_custom_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v1 = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) v2 = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) net = MultipleInputSingleOutputNet() Jvp(net)(x, y, (v1, v2)) def test_jvp_multiple_inputs_multiple_outputs_default_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) net = MultipleInputMultipleOutputNet() Jvp(net)(x, y, (v, v)) def test_jvp_multiple_inputs_multiple_outputs_custom_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v1 = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) v2 = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) net = MultipleInputMultipleOutputNet() Jvp(net)(x, y, (v1, v2)) def test_jvp_wrong_input_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) net = SingleInputSingleOutputNet() with pytest.raises(TypeError): Jvp(net)(x, (v, v)) def test_jvp_wrong_input_v_2_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) net = SingleInputSingleOutputNet() with pytest.raises(TypeError): Jvp(net)(x, (v,)) def test_jvp_wrong_input_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) net = SingleInputSingleOutputNet() with pytest.raises(TypeError): Jvp(net)(x, x, v) def test_jvp_wrong_input_2_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) net = MultipleInputSingleOutputNet() with pytest.raises(TypeError): Jvp(net)((x, y), (v, v)) def test_jvp_wrong_input_3_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) net = MultipleInputSingleOutputNet() with pytest.raises(TypeError): Jvp(net)(x, y, v)