# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from collections import Counter import numpy as np import mindspore.nn as nn from mindspore import Tensor, Parameter from mindspore.common import dtype as mstype from mindspore.common.api import _cell_graph_executor from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import LARS, Momentum from mindspore.ops import operations as P def multisteplr(total_steps, milestone, base_lr=0.9, gamma=0.1, dtype=mstype.float32): lr = [] milestone = Counter(milestone) for step in range(total_steps): base_lr = base_lr * gamma ** milestone[step] lr.append(base_lr) return Tensor(np.array(lr), dtype) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight") self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias") self.matmul = P.MatMul() self.biasAdd = P.BiasAdd() def construct(self, x): x = self.biasAdd(self.matmul(x, self.weight), self.bias) return x def test_lars_multi_step_lr(): inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() lr = multisteplr(10, [2, 6]) SGD = Momentum(net.trainable_params(), lr, 0.9) optimizer = LARS(SGD, epsilon=1e-08, coefficient=0.02, use_clip=True, lars_filter=lambda x: 'bn' not in x.name) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) _cell_graph_executor.compile(train_network, inputs, label) def test_lars_float_lr(): inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) net = Net() net.set_train() loss = nn.SoftmaxCrossEntropyWithLogits() lr = 0.1 SGD = Momentum(net.trainable_params(), lr, 0.9) optimizer = LARS(SGD, epsilon=1e-08, coefficient=0.02, lars_filter=lambda x: 'bn' not in x.name) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) _cell_graph_executor.compile(train_network, inputs, label)