# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_lr_schedule """ import numpy as np from mindspore import Parameter, ParameterTuple, Tensor from mindspore.nn import Cell from mindspore.nn.optim import Optimizer from mindspore.ops.operations import BiasAdd, MatMul import mindspore.ops.composite as C grad_by_list = C.GradOperation(get_by_list=True) class Net(Cell): """ Net definition """ def __init__(self): super(Net, self).__init__() self.weight = Parameter(Tensor(np.ones([64, 10])), name="weight") self.bias = Parameter(Tensor(np.ones([10])), name="bias") self.matmul = MatMul() self.biasAdd = BiasAdd() def construct(self, x): x = self.biasAdd(self.matmul(x, self.weight), self.bias) return x class _TrainOneStepCell(Cell): """ _TrainOneStepCell definition """ def __init__(self, network, optimizer): """ Append an optimizer to the training network after that the construct function can be called to create the backward graph. Arguments: network: The training network. Note that loss function should have been added. optimizer: optimizer for updating the weights """ super(_TrainOneStepCell, self).__init__(auto_prefix=False) self.network = network self.weights = ParameterTuple(network.get_parameters()) if not isinstance(optimizer, Optimizer): raise TypeError('{} is not an optimizer'.format( type(optimizer).__name__)) self.has_lr_schedule = False self.optimizer = optimizer def construct(self, data, label, *args): weights = self.weights grads = grad_by_list(self.network, weights)(data, label) if self.lr_schedule: self.schedule.update_lr(*args) return self.optimizer(grads)