# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test Activations """ import numpy as np import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import _cell_graph_executor from ..ut_filter import non_graph_engine class SoftmaxNet(nn.Cell): def __init__(self, dim): super(SoftmaxNet, self).__init__() self.softmax = nn.Softmax(dim) def construct(self, x): return self.softmax(x) @non_graph_engine def test_compile(): net = SoftmaxNet(0) input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32)) net(input_tensor) @non_graph_engine def test_compile_axis(): net = SoftmaxNet(-1) prob = 355 input_data = np.random.randn(4, 16, 1, 1).astype(np.float32) * prob input_tensor = Tensor(input_data) net(input_tensor) class LogSoftmaxNet(nn.Cell): def __init__(self, dim): super(LogSoftmaxNet, self).__init__() self.logsoftmax = nn.LogSoftmax(dim) def construct(self, x): return self.logsoftmax(x) @non_graph_engine def test_compile_logsoftmax(): net = LogSoftmaxNet(0) input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32)) net(input_tensor) class Net1(nn.Cell): def __init__(self): super(Net1, self).__init__() self.relu = nn.ReLU() def construct(self, x): return self.relu(x) def test_compile_relu(): net = Net1() input_data = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32)) _cell_graph_executor.compile(net, input_data) class Net_gelu(nn.Cell): def __init__(self): super(Net_gelu, self).__init__() self.gelu = nn.GELU() def construct(self, x): return self.gelu(x) def test_compile_gelu(): net = Net_gelu() input_data = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32)) _cell_graph_executor.compile(net, input_data) class NetLeakyReLU(nn.Cell): def __init__(self, alpha): super(NetLeakyReLU, self).__init__() self.leaky_relu = nn.LeakyReLU(alpha) def construct(self, x): return self.leaky_relu(x) def test_compile_leaky_relu(): net = NetLeakyReLU(alpha=0.1) input_data = Tensor(np.array([[1.6, 0, 0.6], [6, 0, -6]], dtype=np.float32)) _cell_graph_executor.compile(net, input_data)