# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test lstm """ import pytest import mindspore.context as context from mindspore import nn from ..ut_filter import run_on_gpu from ....ops_common import convert class LstmTestNet(nn.Cell): """ LstmTestNet definition """ def __init__(self, input_size, hidden_size, num_layers, has_bias, batch_first, bidirectional): super(LstmTestNet, self).__init__() self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, has_bias=has_bias, batch_first=batch_first, bidirectional=bidirectional, dropout=0.0) def construct(self, inp, h0, c0): return self.lstm(inp, (h0, c0)) test_case_cell_ops = [ ('lstm1_with_bias', { 'cell': LstmTestNet(10, 12, 2, has_bias=True, batch_first=False, bidirectional=False), 'input_shape': [[5, 3, 10], [2, 3, 12], [2, 3, 12]], 'output_shape': [[5, 3, 12], [2, 3, 12], [2, 3, 12]]}), ('lstm2_without_bias', { 'cell': LstmTestNet(10, 12, 2, has_bias=False, batch_first=False, bidirectional=False), 'input_shape': [[5, 3, 10], [2, 3, 12], [2, 3, 12]], 'output_shape': [[5, 3, 12], [2, 3, 12], [2, 3, 12]]}), ('lstm3_with_bias_bidirectional', { 'cell': LstmTestNet(10, 12, 2, has_bias=True, batch_first=False, bidirectional=True), 'input_shape': [[5, 3, 10], [4, 3, 12], [4, 3, 12]], 'output_shape': [[5, 3, 24], [4, 3, 12], [4, 3, 12]]}), ('lstm4_without_bias_bidirectional', { 'cell': LstmTestNet(10, 12, 2, has_bias=False, batch_first=False, bidirectional=True), 'input_shape': [[5, 3, 10], [4, 3, 12], [4, 3, 12]], 'output_shape': [[5, 3, 24], [4, 3, 12], [4, 3, 12]]}), ('lstm5_with_bias_batch_first', { 'cell': LstmTestNet(10, 12, 2, has_bias=True, batch_first=True, bidirectional=False), 'input_shape': [[3, 5, 10], [2, 3, 12], [2, 3, 12]], 'output_shape': [[3, 5, 12], [2, 3, 12], [2, 3, 12]]}), ('lstm6_without_bias_batch_first', { 'cell': LstmTestNet(10, 12, 2, has_bias=False, batch_first=True, bidirectional=False), 'input_shape': [[3, 5, 10], [2, 3, 12], [2, 3, 12]], 'output_shape': [[3, 5, 12], [2, 3, 12], [2, 3, 12]]}), ('lstm7_with_bias_bidirectional_batch_first', { 'cell': LstmTestNet(10, 12, 2, has_bias=True, batch_first=True, bidirectional=True), 'input_shape': [[3, 5, 10], [4, 3, 12], [4, 3, 12]], 'output_shape': [[3, 5, 24], [4, 3, 12], [4, 3, 12]]}), ('lstm8_without_bias_bidirectional_batch_first', { 'cell': LstmTestNet(10, 12, 2, has_bias=False, batch_first=True, bidirectional=True), 'input_shape': [[3, 5, 10], [4, 3, 12], [4, 3, 12]], 'output_shape': [[3, 5, 24], [4, 3, 12], [4, 3, 12]]}), ] # use -k to select certain testcast # pytest tests/python/ops/test_lstm.py::test_compile -k lstm_with_bias @pytest.mark.parametrize('args', test_case_cell_ops, ids=lambda x: x[0]) def test_compile(args): config = args[1] shapes = config['input_shape'] net = config['cell'] net.set_train() inputs = [convert(shp) for shp in shapes] out = net(*inputs) print(f"out: {out}") @run_on_gpu @pytest.mark.parametrize('args', test_case_cell_ops, ids=lambda x: x[0]) def test_execute(args): """ test_execute """ config = args[1] shapes = config['input_shape'] net = config['cell'] net.set_train() inputs = [convert(shp) for shp in shapes] context.set_context(mode=context.GRAPH_MODE, device_target="GPU") # pylint: disable=unused-variable ret, (hn, cn) = net(*inputs) print(f'result: {shapes[0]} --> {ret.asnumpy().shape}, expected: {config["output_shape"][0]}')