# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_tensor_slice """ import numpy as np import pytest from mindspore import Tensor from mindspore import context from mindspore import dtype as mstype from mindspore.nn import Cell from ....mindspore_test_framework.mindspore_test import mindspore_test from ....mindspore_test_framework.pipeline.forward.compile_forward \ import pipeline_for_compile_forward_ge_graph_for_case_by_case_config, \ pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception class NetWorkFancyIndex(Cell): def __init__(self, index): super(NetWorkFancyIndex, self).__init__() self.index = index def construct(self, tensor): return tensor[self.index] class TensorItemByNone(Cell): def construct(self, tensor): ret = tensor.item() return ret class TensorItemByItem(Cell): def construct(self, tensor, index): ret = tensor.item(index) return ret def test_tensor_fancy_index_integer_list(): context.set_context(mode=context.GRAPH_MODE) index = [0, 2, 1] net = NetWorkFancyIndex(index) input_np = np.arange(60).reshape(3, 4, 5) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def test_tensor_fancy_index_boolean_list(): context.set_context(mode=context.GRAPH_MODE) index = [True, True, False] net = NetWorkFancyIndex(index) input_np = np.arange(60).reshape(3, 4, 5) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def test_tensor_fancy_index_integer_boolean_list_graph(): context.set_context(mode=context.GRAPH_MODE) index = [1, 2, True, False] net = NetWorkFancyIndex(index) input_np = np.arange(60).reshape(3, 4, 5) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def test_tensor_fancy_index_integer_list_mixed(): context.set_context(mode=context.GRAPH_MODE) index = (1, [2, 1, 3], slice(1, 3, 1), ..., 4) net = NetWorkFancyIndex(index) input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def test_tensor_fancy_index_integer_tuple_mixed(): context.set_context(mode=context.GRAPH_MODE) index = (1, (2, 1, 3), slice(1, 3, 1), ..., 4) net = NetWorkFancyIndex(index) input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def test_tensor_fancy_index_integer_list_tuple_mixed(): context.set_context(mode=context.GRAPH_MODE) index = (1, [2, 1, 3], (3, 2, 1), slice(1, 3, 1), ..., 4) net = NetWorkFancyIndex(index) input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def test_tensor_fancy_index_integer_list_tuple_bool_mixed(): context.set_context(mode=context.GRAPH_MODE) index = (1, [2, 1, 3], True, (3, 2, 1), slice(1, 3, 1), ..., True, 4) net = NetWorkFancyIndex(index) input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def test_tensor_fancy_index_integer_list_tuple_bool_mixed_error(): context.set_context(mode=context.GRAPH_MODE) index = (1, [2, 1, 3], True, (3, 2, 1), slice(1, 3, 1), ..., False, 4) net = NetWorkFancyIndex(index) input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) input_me = Tensor(input_np, dtype=mstype.float32) with pytest.raises(IndexError): net(input_me) input_1d_np = np.ndarray([1]).astype(np.float32) input_1d_ms = Tensor(input_1d_np, mstype.float32) input_3d_np = np.random.randint(3, size=(3, 4, 5)).astype(np.int32) input_3d_ms = Tensor(input_3d_np, mstype.float32) index_np_1, index_np_2, index_np_3, index_np_4 = 0, 1.0, 30, 60 tuple_index_np_1, tuple_index_np_2, tuple_index_np_3, tuple_index_np_4, tuple_index_np_5 = \ (0,), (1, 2), (1, 2, 3), (3, 4, 4), (1, 2, 3, 4) test_cases = [ ('TensorItemByNone', {'block': TensorItemByNone(), 'desc_inputs': [input_1d_ms],}), ('1dTensorItemByInt', {'block': TensorItemByItem(), 'desc_inputs': [input_1d_ms, index_np_1],}), ('3dTensorItemByInt', {'block': TensorItemByItem(), 'desc_inputs': [input_3d_ms, index_np_1],}), ('3dTensorItemByInt2', {'block': TensorItemByItem(), 'desc_inputs': [input_3d_ms, index_np_3],}), ('1dTensorItemByTuple', {'block': TensorItemByItem(), 'desc_inputs': [input_1d_ms, tuple_index_np_1],}), ('3dTensorItemByTuple', {'block': TensorItemByItem(), 'desc_inputs': [input_3d_ms, tuple_index_np_3],}), ] test_error_cases = [ ('TensorItemByNoneForMulDimsTensor', { 'block': (TensorItemByNone(), {'exception': ValueError}), 'desc_inputs': [input_3d_ms] }), ('TensorItemByFloatError', { 'block': (TensorItemByItem(), {'exception': TypeError}), 'desc_inputs': [input_1d_ms, index_np_2] }), ('TensorItemByFloatError2', { 'block': (TensorItemByItem(), {'exception': TypeError}), 'desc_inputs': [input_3d_ms, index_np_2] }), ('TensorItemByIntOverBoundary', { 'block': (TensorItemByItem(), {'exception': IndexError}), 'desc_inputs': [input_1d_ms, index_np_3] }), ('TensorItemByIntOverBoundary2', { 'block': (TensorItemByItem(), {'exception': IndexError}), 'desc_inputs': [input_3d_ms, index_np_4] }), ('1dTensorItemBy2dTuple', { 'block': (TensorItemByItem(), {'exception': ValueError}), 'desc_inputs': [input_1d_ms, tuple_index_np_2] }), ('3dTensorItemBy2dTuple', { 'block': (TensorItemByItem(), {'exception': ValueError}), 'desc_inputs': [input_3d_ms, tuple_index_np_2] }), ('3dTensorItemBy3dTupleOutOfBoundary', { 'block': (TensorItemByItem(), {'exception': IndexError}), 'desc_inputs': [input_3d_ms, tuple_index_np_4] }), ('3dTensorItemBy4dTuple', { 'block': (TensorItemByItem(), {'exception': ValueError}), 'desc_inputs': [input_3d_ms, tuple_index_np_5] }) ] @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config) def test_exec(): context.set_context(mode=context.GRAPH_MODE) return test_cases @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception) def test_check_exception(): return test_error_cases