# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _cell_graph_executor from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class AddRelu(nn.Cell): def __init__(self, strategy0=None, strategy1=None): super(AddRelu, self).__init__() self.add = P.Add().shard(strategy=strategy0) self.relu = P.ReLU().shard(strategy=strategy1) def construct(self, x, z): out = self.add(x, z) return self.relu(out) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, z): predict = self.network(x, z) return self.loss(predict) class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.network = network def construct(self, x, y): return grad_all(self.network)(x, y) def compile_net(net, x, y): net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x, y) def test_add_relu_stride_slice(): context.set_auto_parallel_context(device_num=8, global_rank=7) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy0 = ((1, 1), (1, 1)) strategy1 = ((8, 1),) net = Grad(NetWithLoss(AddRelu(strategy0, strategy1))) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([128, 32]), dtype=ms.float32) compile_net(net, x, y) def test_add_relu_all_gather(): context.set_auto_parallel_context(device_num=8, global_rank=7) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy0 = ((8, 1), (8, 1)) strategy1 = ((1, 1),) net = Grad(NetWithLoss(AddRelu(strategy0, strategy1))) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([128, 32]), dtype=ms.float32) compile_net(net, x, y)