# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore.nn as nn import mindspore as ms from mindspore import Tensor, context, Parameter from mindspore.common.api import _cell_graph_executor from mindspore.ops import operations as P from mindspore.common.initializer import initializer from mindspore.context import _Context from ....train_step_wrap import train_step_with_loss_warp class MatMulCell(nn.Cell): def __init__(self): super(MatMulCell, self).__init__() self.reshape = P.Reshape() self.matmul0 = P.MatMul() self.weight = Parameter(initializer("ones", [128, 64], ms.float32), name="weight") self.relu = P.ReLU().shard(((1, 8),)) def construct(self, x): x = self.matmul0(x, self.weight) x = self.reshape(x, (32, 128)) x = self.relu(x) return x class DenseMutMulNet(nn.Cell): def __init__(self): super(DenseMutMulNet, self).__init__() self.fc1 = nn.Dense(128, 768, activation='relu') self.fc2 = nn.Dense(128, 768, activation='relu') self.fc3 = nn.Dense(128, 768, activation='relu') self.fc4 = nn.Dense(768, 768, activation='relu') self.fc1.matmul.shard(((1, 1), (1, 8))) self.fc2.matmul.shard(((1, 1), (1, 8))) self.fc3.matmul.shard(((1, 1), (1, 8))) self.relu4 = nn.ReLU() self.relu5 = nn.ReLU() self.transpose = P.Transpose() self.matmul1 = P.MatMul() self.matmul2 = P.MatMul() self.matmul_cell = MatMulCell() self.fc1.recompute(mp_comm_recompute=False) self.fc2.recompute(mp_comm_recompute=False) self.fc3.recompute(mp_comm_recompute=False) self.matmul_cell.recompute(mp_comm_recompute=False) def construct(self, x): x = self.matmul_cell(x) q = self.fc1(x) k = self.fc2(x) v = self.fc3(x) k = self.transpose(k, (1, 0)) c = self.relu4(self.matmul1(q, k)) s = self.relu5(self.matmul2(c, v)) s = self.fc4(s) return s def test_dmnet_train_step(): context.reset_auto_parallel_context() _Context().set_backend_policy("vm") context.set_context(mode=context.GRAPH_MODE) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8) input_ = Tensor(np.ones([64, 128]).astype(np.float32) * 0.01) label = Tensor(np.zeros([32, 768]).astype(np.float32)) net = train_step_with_loss_warp(DenseMutMulNet()) net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, input_, label) _Context().set_backend_policy("ge")