# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms from mindspore import Tensor from mindspore.parallel._utils import _to_full_shapes, _to_full_tensor def test_to_full_shapes(): device_num = 16 shapes = [[32, 128], [12], [24, 1, 12]] full_shapes = _to_full_shapes(shapes, device_num) assert full_shapes == [(512, 128), (192,), (384, 1, 12)] def test_to_full_tensor_1(): elem = Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32) device_num = 4 global_rank = 2 full_tensor = _to_full_tensor(elem, device_num, global_rank, scaling_sens=None) expect = ([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 2, 3], [4, 5, 6], [0, 0, 0], [0, 0, 0]]) expect_tensor = Tensor(expect, dtype=ms.float32) assert np.all(full_tensor[0].asnumpy() == expect_tensor.asnumpy()) def test_to_full_tensor_2(): elem0 = Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32) elem1 = Tensor([[1], [4]], dtype=ms.int32) elem = (elem0, elem1,) device_num = 4 global_rank = 2 full_tensor = _to_full_tensor(elem, device_num, global_rank, scaling_sens=None) expect0 = ([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 2, 3], [4, 5, 6], [0, 0, 0], [0, 0, 0]]) expect_tensor0 = Tensor(expect0, dtype=ms.float32) expect1 = ([[0], [0], [0], [0], [1], [4], [0], [0]]) expect_tensor1 = Tensor(expect1, dtype=ms.int32) expect_tensors = (expect_tensor0, expect_tensor1) assert np.all(full_tensor[0].asnumpy() == expect_tensors[0].asnumpy()) assert np.all(full_tensor[1].asnumpy() == expect_tensors[1].asnumpy()) def test_to_full_tensor_sens_2(): elem0 = Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32) elem1 = Tensor([[1], [4]], dtype=ms.int32) elem = (elem0, elem1,) device_num = 4 global_rank = 2 full_tensor = _to_full_tensor(elem, device_num, global_rank, scaling_sens=0.1) expect0 = ([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 2, 3], [4, 5, 6], [0, 0, 0], [0, 0, 0]]) expect_tensor0 = Tensor(expect0, dtype=ms.float32) expect1 = ([[0], [0], [0], [0], [1], [4], [0], [0]]) expect_tensor1 = Tensor(expect1, dtype=ms.int32) expect_tensor_sens = Tensor(0.1, dtype=ms.float32) expect_tensors = (expect_tensor0, expect_tensor1, expect_tensor_sens) assert np.all(full_tensor[0].asnumpy() == expect_tensors[0].asnumpy()) assert np.all(full_tensor[1].asnumpy() == expect_tensors[1].asnumpy()) assert np.all(full_tensor[2].asnumpy() == expect_tensors[2].asnumpy())