# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test distribute predict """ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor, Model from mindspore.ops import operations as P from mindspore import context from mindspore.parallel._utils import _infer_rank_list class Net(nn.Cell): """Net definition""" def __init__(self): super(Net, self).__init__() self.fc1 = nn.Dense(128, 768, activation='relu') self.fc2 = nn.Dense(128, 768, activation='relu') self.fc3 = nn.Dense(128, 768, activation='relu') self.fc4 = nn.Dense(768, 768, activation='relu') self.relu4 = nn.ReLU() self.relu5 = nn.ReLU() self.transpose = P.Transpose() self.matmul1 = P.MatMul() self.matmul2 = P.MatMul() def construct(self, x): q = self.fc1(x) k = self.fc2(x) v = self.fc3(x) k = self.transpose(k, (1, 0)) c = self.relu4(self.matmul1(q, k)) s = self.relu5(self.matmul2(c, v)) s = self.fc4(s) return s def test_distribute_predict(): context.set_context(mode=context.GRAPH_MODE) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, full_batch=True, enable_parallel_optimizer=True) inputs = Tensor(np.ones([32, 128]).astype(np.float32)) net = Net() model = Model(net) predict_map = model.infer_predict_layout(inputs) output = model.predict(inputs) context.reset_auto_parallel_context() return predict_map, output def test_edge_case(): context.set_context(mode=context.GRAPH_MODE) inputs = Tensor(np.ones([32, 48]).astype(np.float32)) net = Net() model = Model(net) with pytest.raises(RuntimeError): model.infer_predict_layout(inputs) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") with pytest.raises(RuntimeError): model.infer_predict_layout(inputs) # standalone predict def test_infer_rank_list1(): train_map = {'weight': [[4, 8], [-1, 0]]} predict_map = None rank_list = _infer_rank_list(train_map, predict_map)["weight"] assert list(rank_list[0]) == [0, 1, 2, 3, 4, 5, 6, 7] assert rank_list[1] is False # similar layout: gpt3 prediction mode def test_infer_rank_list2(): train_map = {'weight': [[4, 8], [-1, 0]]} predict_map = {'weight': [[8], [-1, 0]]} rank_list = _infer_rank_list(train_map, predict_map) expect_map = {'weight': ([0], True)} assert rank_list == expect_map # same layout def test_infer_rank_list3(): train_map = {'weight': [[4, 8], [-1, 0]]} predict_map = {'weight': [[4, 8], [-1, 0]]} rank_list = _infer_rank_list(train_map, predict_map) expect_map = {'weight': ([0], True)} assert rank_list == expect_map # totally different layout def test_infer_rank_list4(): train_map = {'weight': [[4, 8], [-1, 0]]} predict_map = {'weight': [[2, 2], [1, 0]]} rank_list = _infer_rank_list(train_map, predict_map)["weight"] assert list(rank_list[0]) == [0, 1, 2, 3, 4, 5, 6, 7] assert rank_list[1] is False # full shape ckpt def test_infer_rank_list5(): train_map = {'weight': [[8], [-1, -1]]} predict_map = {'weight': [[2, 2], [1, 0]]} rank_list = _infer_rank_list(train_map, predict_map) expect_map = {'weight': ([0], False)} assert rank_list == expect_map