# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _cell_graph_executor from mindspore.common.parameter import Parameter from mindspore.ops import composite as C from mindspore.ops import operations as P from mindspore.common.initializer import initializer from mindspore.nn import TrainOneStepCell, Momentum from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x): predict = self.network(x) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x): return grad_all(self.network)(x) def test_unique_column_split(): class Net(nn.Cell): def __init__(self): super().__init__() self.unique = P.Unique().shard(((1,),)) self.relu = P.ReLU() self.mul = P.Mul() self.embedding_lookp = P.Gather().shard(((1, 8), (1,))) self.embedding_table = Parameter(initializer('normal', [2000, 128]), name='embedding_table') self.gatherv2 = P.Gather().shard(((1, 8), (1,))) self.reshape = P.Reshape() self.matmul = P.MatMul() self.mul_weight = Parameter(Tensor(np.full([32, 64, 1], 0.5, dtype=np.float32)), name="mul_weight") def construct(self, indices): indices_flatten = self.reshape(indices, (-1,)) unique_id, unique_idx = self.unique(indices_flatten) unique_id_weight = self.embedding_lookp(self.embedding_table, unique_id, 0) weight_flatten = self.gatherv2(unique_id_weight, unique_idx, 0) weight = self.reshape(weight_flatten, (32, 64, 128)) vx = self.mul(weight, self.mul_weight) return vx size = 8 context.set_auto_parallel_context(device_num=size, global_rank=0, parallel_mode="auto_parallel") x = Tensor(np.ones([32, 64]), dtype=ms.int32) net = Net() optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, x) def test_unique_row_split(): class Net(nn.Cell): def __init__(self): super().__init__() self.unique = P.Unique().shard(((1,),)) self.relu = P.ReLU() self.mul = P.Mul() self.embedding_lookp = P.Gather().shard(((8, 1), (1,))) self.embedding_table = Parameter(initializer('normal', [2000, 128]), name='embedding_table') self.gatherv2 = P.Gather().shard(((1, 1), (1,))) self.reshape = P.Reshape() self.matmul = P.MatMul() self.mul_weight = Parameter(Tensor(np.full([32, 64, 1], 0.5, dtype=np.float32)), name="mul_weight") def construct(self, indices): indices_flatten = self.reshape(indices, (-1,)) unique_id, unique_idx = self.unique(indices_flatten) unique_id_weight = self.embedding_lookp(self.embedding_table, unique_id, 0) weight_flatten = self.gatherv2(unique_id_weight, unique_idx, 0) weight = self.reshape(weight_flatten, (32, 64, 128)) vx = self.mul(weight, self.mul_weight) return vx size = 8 context.set_auto_parallel_context(device_num=size, global_rank=0, parallel_mode="semi_auto_parallel") x = Tensor(np.ones([32, 64]), dtype=ms.int32) net = Net() optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, x)