# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore.common.api import _cell_graph_executor from mindspore.ops import operations as P from mindspore.ops import composite as C from mindspore import Tensor, context from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y): return grad_all(self.network)(x, y) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y): predict = self.network(x, y) return self.loss(predict) class Net(nn.Cell): def __init__(self, shape, offset, strategy1=None, strategy2=None, target="Device"): super().__init__() self.index = Tensor(np.ones(shape), dtype=ms.int32) self.offset = offset self.elu = P.EmbeddingLookup().shard(strategy1).add_prim_attr("primitive_target", target) self.mm = P.BatchMatMul().shard(strategy2) def construct(self, x, y): out = self.elu(x, self.index, self.offset) out = self.mm(out, y) return out def test_embeddinglookup_reducescatter_false(): shape = [8, 8] offset = 8 net = NetWithLoss(Net(shape, offset)) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_embeddinglookup_reducescatter_true(): shape = [8, 8] offset = 8 net = NetWithLoss(Net(shape, offset)) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_embeddinglookup_reducescatter_false_grad(): shape = [8, 8] offset = 8 net = GradWrap(NetWithLoss(Net(shape, offset))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_embeddinglookup_reducescatter_true_grad(): shape = [8, 8] offset = 8 net = GradWrap(NetWithLoss(Net(shape, offset))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_embeddinglookup_semi_auto1(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") shape = [64, 32] offset = 0 strategy1 = ((8, 1), (1, 1)) strategy2 = ((4, 1, 2), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(shape, offset, strategy1, strategy2, "CPU"))) net.set_auto_parallel() x = Tensor(np.ones([64, 64]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_embeddinglookup_semi_auto2(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") shape = [64, 32] offset = 0 strategy1 = ((1, 8), (1, 1)) strategy2 = ((4, 1, 2), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(shape, offset, strategy1, strategy2, "CPU"))) net.set_auto_parallel() x = Tensor(np.ones([64, 64]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y)