# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _cell_graph_executor from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y): predict = self.network(x, y) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y): return grad_all(self.network)(x, y) class Net(nn.Cell): def __init__(self, strategy1=None, strategy2=None): super().__init__() self.dropout = P.Dropout(keep_prob=0.6).shard(strategy1) self.matmul = P.MatMul().shard(strategy2) def construct(self, x, y): out = self.matmul(x, y) out, _ = self.dropout(out) return out def test_dropout_semi_auto(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") net = GradWrap(NetWithLoss(Net())) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 128]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_dropout_semi_auto2(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((8, 1),) strategy2 = ((4, 2), (2, 1)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 128]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_dropout_semi_auto3(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((2, 4),) strategy2 = ((4, 2), (2, 1)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 128]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_dropout_auto(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel") net = GradWrap(NetWithLoss(Net())) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 128]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y)