# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _cell_graph_executor from mindspore.ops import composite as C from mindspore.ops import operations as P grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network, strategy3): super(NetWithLoss, self).__init__() self.loss = P.SoftmaxCrossEntropyWithLogits().shard(strategy3) self.network = network def construct(self, x, y, bias, label): predict = self.network(x, y, bias) return self.loss(predict, label)[0] class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, bias, label): return grad_all(self.network)(x, y, bias, label) def test_linear(): class Net(nn.Cell): def __init__(self, strategy0, strategy1, strategy2): super().__init__() self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0) self.add = P.Add().shard(strategy1) self.gelu = P.GeLU().shard(strategy2) def construct(self, x, y, bias): out = self.fc_nobias(x, y) out = self.add(out, bias) out = self.gelu(out) return out context.set_auto_parallel_context(device_num=16, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy0 = ((2, 4), (2, 4)) strategy1 = ((2, 4), (4,)) strategy2 = ((2, 8),) strategy3 = ((16, 1), (16, 1)) net = GradWrap(NetWithLoss(Net(strategy0, strategy1, strategy2), strategy3)) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 32]), dtype=ms.float32) bias = Tensor(np.ones([64]), dtype=ms.float32) label = Tensor(np.ones([64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y, bias, label)