# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore as ms import mindspore.context as context from mindspore import Tensor, Parameter import mindspore.nn as nn from mindspore.common.api import _cell_graph_executor from mindspore.nn import TrainOneStepCell, Momentum from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self, mul_weight, strategy=None): super(Net, self).__init__() self.reluv2 = P.ReLUV2().shard(strategy) self.mul = P.Mul() self.weight = Parameter(mul_weight, "w1") def construct(self, x): out = self.mul(x, self.weight) output, _ = self.reluv2(out) return output _w1 = Tensor(np.ones([32, 16, 48, 64]), dtype=ms.float32) _x = Tensor(np.ones([32, 16, 48, 64]), dtype=ms.float32) def compile_net(net): context.set_context(mode=context.GRAPH_MODE) optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x) context.reset_auto_parallel_context() def test_reluv2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy = ((2, 1, 2, 2),) net = Net(_w1, strategy) compile_net(net) def test_reluv2_no_full(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy = ((2, 1, 2, 1),) net = Net(_w1, strategy) compile_net(net) def test_reluv2_no_strategy(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy = None net = Net(_w1, strategy) compile_net(net) def test_reluv2_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net(_w1) compile_net(net)