# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _cell_graph_executor from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, b): predict = self.network(x, y, b) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b): return grad_all(self.network)(x, y, b) def compile_net(net, x, y, b): net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, x, y, b) # model_parallel test def test_two_matmul(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.matmul2 = P.MatMul().shard(strategy2) def construct(self, x, y, b): out = self.matmul1(x, y) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0, gradients_mean=True) strategy1 = ((4, 2), (2, 1)) strategy2 = ((2, 4), (4, 1)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_two_matmul_repeated_calculation1(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.matmul2 = P.MatMul().shard(strategy2) def construct(self, x, y, b): out = self.matmul1(x, y) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=64, global_rank=5, gradients_mean=True) strategy1 = ((2, 4), (4, 8)) strategy2 = ((1, 1), (1, 1)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_two_matmul_repeated_calculation2(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.matmul2 = P.MatMul().shard(strategy2) def construct(self, x, y, b): out = self.matmul1(x, y) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=64, global_rank=15) strategy1 = ((2, 4), (4, 8)) strategy2 = ((2, 2), (2, 1)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_forward_reduce_scatter(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.matmul.add_prim_attr("forward_reduce_scatter", True) self.mul = P.Mul().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.mul(out, b) return out context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([128, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_forward_reduce_scatter_transpose(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul(transpose_b=True).shard(strategy1) self.matmul.add_prim_attr("forward_reduce_scatter", True) self.mul = P.Mul().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.mul(out, b) return out context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((2, 4), (2, 4)) strategy2 = ((8, 2), (8, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 32]), dtype=ms.float32) b = Tensor(np.ones([128, 64]), dtype=ms.float32) compile_net(net, x, y, b)