# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ @File : test_sparse_pynative.py @Author: @Date : 2020-08-04 @Desc : test mindspore sparse pynative """ import pytest import mindspore as ms import mindspore.nn as nn from mindspore import context, Tensor, RowTensor, SparseTensor from mindspore.ops import composite as C @pytest.fixture(scope="module", autouse=True) def setup_teardown(): context.set_context(mode=context.PYNATIVE_MODE, enable_sparse=True) yield context.set_context(mode=context.GRAPH_MODE, enable_sparse=False) grad_all = C.GradOperation(get_all=True) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, *args): grad = grad_all(self.network)(*args) return grad def test_row_tensor_attr(): class RowTensorGetAttr(nn.Cell): def __init__(self, dense_shape): super(RowTensorGetAttr, self).__init__() self.dense_shape = dense_shape def construct(self, indices, values): x = RowTensor(indices, values, self.dense_shape) return x.values, x.indices, x.dense_shape indices = Tensor([0]) values = Tensor([[1, 2]], dtype=ms.float32) RowTensorGetAttr((3, 2))(indices, values) GradWrap(RowTensorGetAttr((3, 2)))(indices, values) def test_sparse_tensor_attr(): class SparseTensorGetAttr(nn.Cell): def __init__(self): super(SparseTensorGetAttr, self).__init__() self.dense_shape = (3, 4) def construct(self, indices, values): x = SparseTensor(indices, values, self.dense_shape) return x.values, x.indices, x.dense_shape indices = Tensor([[0, 1], [1, 2]]) values = Tensor([1, 2], dtype=ms.float32) SparseTensorGetAttr()(indices, values) GradWrap(SparseTensorGetAttr())(indices, values)